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Abstract
A desirable acoustic metasurface requires the scattered acoustic field distribution uniform. Neural networks are effective 
substitutions to mimic the expensive FE simulations in most research. However, the computational cost required to construct 
a model with only single high-fidelity (HF) simulation data is still unacceptable. This paper presents a deep learning-based 
multi-fidelity optimization framework to improve the uniformity of the scattered acoustic field distribution. First, a multi-
fidelity composite convolutional neural network (MF-CCNN) method is proposed to predict the high-dimensional scattered 
acoustic field at a lower data cost. The developed MF-CCNN consists of four convolutional subnets. The first part predicts 
a low-fidelity (LF) output, whose features are then extracted by the second part and concatenated with the inputs to predict 
the HF result. Two parallel branches are utilized to map the LF features to the HF output. Then, the physical parameters’ 
optimization neural network is proposed to minimize the objective under the prediction of MF-CCNN. The proposed method 
is compared with other state-of-the-art multi-fidelity networks, and the results demonstrate that MF-CCNN reaches the high-
est accuracy and the mean absolute error is improved by at least 20%. The variance of the obtained scattered acoustic field 
after optimization is reduced by 3.62%, and the time cost is only 8% of the genetic algorithm (GA), proving the efficiency 
and accuracy of the proposed framework.

Keywords Convolutional neural network · Multi-fidelity · Acoustic metasurface · Field prediction · Optimization

1 Introduction

Acoustic metamaterial [1, 2] is a kind of artificial structure 
material applied in the realm of acoustics. It has become a 
research hotspot because of its superior ability to manipulate 
sound waves [3]. With the abnormal reflection and refrac-
tion characteristics to sound waves, some special applica-
tion requirements can be achieved, such as diffuse reflection 
[4], acoustic focusing [5], acoustic absorption [6], acoustic 
cloaking [7], and acoustic communication [8]. Traditional 
metamaterials have drawbacks such as large volume, high 
manufacturing cost, and narrow bandwidth. To solve the 
above problems, an artificial structure of acoustic metasur-
face [9–11] has been proposed, which is a two-dimensional 

metamaterial designed by analogy with optical metasurface. 
The acoustic metasurfaces consist of subwavelength micro-
structure units obeying the generalized Snell’s law [12] and 
can realize manipulation of reflected or refracted waves by 
applying abrupt phase shifts at the interface.

To achieve acoustic cloaking with uniform reflection 
waves [13], specific phase gradients of the metasurfaces 
must be designed. The conventional method needs to execute 
high-performance numerical simulation models repeatedly 
to obtain information about the acoustic field and optimize 
the physical property parameters of the metasurfaces, which 
turns the optimization process into a high-dimensional, 
black-box, and time-consuming problem [14–16]. The key 
to metasurfaces design lies in the rapid prediction of sound 
field distribution and acoustic performance. Therefore, sur-
rogate models such as the Kriging model are utilized in 
engineering to replace simulation models to reduce com-
putational and time costs [17]. Nevertheless, these shallow 
models are less effective in dealing with high-dimensional 
problems due to their limited representation ability. In recent 
years, data-driven deep learning methods have been widely 
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applied in the realm of field prediction [18–21], which uti-
lize deep neural networks [e.g., convolutional neural network 
(CNN) and recurrent neural network (RNN)] to learn the 
representations from high-dimensional data automatically. 
For instance, Liang et al. [22] developed a neural network 
scheme for estimating aorta stress distributions, which 
achieved the mean relative error (MRE) of 0.89% by train-
ing on 729 samples. Nie et al. [23] established two differ-
ent CNN models that take the loads, geometry features, and 
boundary conditions as inputs and output the stress distri-
bution over the surface of the cantilever beam. The models 
were trained and evaluated on a dataset containing 120,960 
samples, which achieved the MRE of 10.43% and 2.04%, 
respectively. Guo et al. [24] first utilized CNN to predict 
the non-uniform steady laminar flow field on a dataset with 
10,000 samples, whose computational cost was much lower 
than the graphics processing unit (GPU) accelerated com-
putational fluid dynamics (CFD) solver. Sekar et al. [25] 
combined the multilayer perceptron (MLP) and CNN to gen-
erate the incompressible laminar flow field around airfoils. 
Kim et al. [26] and Wu et al. [27] used generative adver-
sarial network (GAN) to predict unsteady flow fields for the 
first time, which showed that GAN can describe a variety 
of fluid behaviors and is 700 times faster than CFD solver. 
Fan et al. [28] proposed mapping from a convex section to 
distribution with CNN. Donda et al. [29] proposed a 2D 
CNN network to derive the absorption spectrum responses 
of metasurface absorbers, which extremely accelerated the 
design process. Zhao et al. [30] used CNN to explore the 
relationship between sound pressures and solved the inverse 
design of metasurfaces. Gao et al. [31] constructed a deep 
auto-encoder network to predict the peak points and directed 
the design of the Helmholtz resonator. Liao et al. [32] estab-
lished a deep neural network surrogate model (DSM) to map 
the geometric parameters into effective mechanical proper-
ties and optimized a given tetra-chiral auxetic with analytical 
sensitivity analysis successfully.

Indeed, the training effect of neural networks dramatically 
relies on the quantity and quality of the dataset, which requires 
meticulously preparing the HF data. The acquisition of HF 
data is a computationally expensive process, whereas low-
fidelity (LF) data is relatively easier to obtain. Nevertheless, 
only using HF data will suffer from the high cost of simulation 
analysis, while the model built only with LF data has lower 
precision. To balance the contradiction between model accu-
racy and data acquisition cost, scholars have proposed a variety 
of multi-fidelity modeling methods to fuse data with different 
precisions effectively [33–35]. Liu and Wang [36] proposed 
an effective multi-fidelity physical constrained neural network 
(MF-PCNN), which obtained lower errors on the dataset with 
much smaller amounts of HF samples than LF compared 
with the single-fidelity model. Meng et al. [37] constructed a 
composite neural network to solve the PDE problems. Zhang 

et al. [38] used CFD simulation data of different grid sizes 
to establish a neural network model to optimize the shape of 
the RAE2822 airfoil. The optimization efficiency is greatly 
improved and the prediction accuracy is comparable to the HF 
model. Compared with the conventional CFD method, multi-
fidelity neural networks have achieved remarkable success in 
data fusion.

However, the underlying application is yet to be exploited 
in the field of acoustics. Besides, most of the current research 
focuses on using massive HF simulation data imposing 
ingenious architecture to improve the accuracy. Although the 
MPINNs proposed by Meng et al. [37] can exploit the linear 
and nonlinear relationships between HF and LF data, the fully 
connected network architecture is inefficient when dealing 
with such high-dimensional problems. To address these issues, 
a deep learning-based multi-fidelity optimization framework 
of scattered acoustic field uniformity is proposed in this work. 
Specifically, we introduce a multi-fidelity composite convolu-
tional neural network (MF-CCNN) for scatted acoustic field 
prediction of acoustic metasurfaces. The physical parameters 
including density and modulus are the inputs, and the output is 
the high-dimensional acoustic field matrix. Ideal finite element 
models (FEMs) of acoustic metasurfaces with different mesh 
sizes are adopted to generate HF and LF data, respectively. 
Then, the LF and HF outputs are trained and predicted simul-
taneously on a dataset consisting of limited HF and massive 
LF simulation data. A feature extractor and two parallel con-
volutional subnets are introduced to map the LF output to the 
HF output. The network without nonlinear activation learns the 
linear correlation between them, whereas the other part with 
nonlinear activation extracts the nonlinear correlation. The 
end-to-end mapping between physical parameters and acoustic 
fields can be achieved. In addition, the physical parameters’ 
optimization neural network is proposed to be combined with 
the MF-CCNN to search for the optimal physical parameters 
of the metasurfaces to minimize the variance of the domain.

The rest of this paper is organized as follows: Sect. 2 intro-
duces the background of acoustic metasurfaces and the cor-
responding finite element model. In Sect. 3, the overall details 
of the proposed framework are presented. The MF-CCNN and 
a brief introduction of two state-of-the-art multi-fidelity neural 
network methods are presented in Sect. 4. Section 5 provides 
the model implementation details and the comparison results, 
followed by the conclusions and future works in Sect. 6.

2  FEM for acoustic field uniformity 
optimization of acoustic metasurface

This section briefly introduces acoustic metasurface, includ-
ing the theoretical model and FEM for emulation of the scat-
tered acoustic field. The mathematical model of the acoustic 
field uniformity optimization problem will be also discussed.
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2.1  Acoustic metasurface

The acoustic metasurface is a kind of artificial layered material 
whose thickness is less than the wavelength of the sound wave. 
With the extraordinary physical properties such as ultrathin 
and flexible manipulation of the acoustic wave, it has broad 
application prospects in wavefront regulation, acoustic imag-
ing, acoustic cloaking, etc. Furthermore, the acoustic metas-
urface obeys the generalized Snell’s law [12], which makes 
it easy to design the structural parameters to arbitrarily tailor 
the wave fields.

Generalized Snell’s law [39] describes the relationship 
between incident angle and refraction angle, which can be 
expressed as

where ni and nt are the refractive indices of the media 
through which the incident and refracted waves pass, respec-
tively. �i is the incidence angle, �t is the refraction angle and 
� is the wavelength. d�∕dx is the phase gradient along with 
the interface, As illustrated in Fig. 1, when the incident wave 
is vertical to the cross-section, the incidence angle �i = 0 , 
hence the refraction angle is

where d�∕dx can be positive or negative. In the case of 
reflection, ni = nt , the expression can be rewritten as

(1)ni sin �i − nt sin �t =
�d�

2�dx
,

(2)�t = arcsin

(
�d�

2�ntdx

)
,

(3)sin
(
�i
)
− sin

(
�r
)
=

�d�

2�ndx
,

where �r is the reflection angle, when �i = 0 , simplification 
of Eq. (3) yields

It can be concluded from Eq. (4) that when d�∕dx ≠ 0 , 
the reflected wave will deviate from the vertical interface by 
a certain angle even if the wave is incident in a perpendicular 
cross-section.

In short, an acoustic metasurface can be regarded as a flat 
structure of subwavelength thickness placed at the interface 
of two media, at which the sound wave produces phase shifts 
along a certain direction. With the same angle of incidence, 
the angle of refraction changes along with d�∕dx , allowing 
arbitrary manipulation of sound waves.

2.2  FEM of acoustic metasurface

In this study, an FE-based acoustic metasurface is utilized to 
emulate the scattered acoustic distribution, which is then pro-
cessed as training and testing data. According to Sect. 2.1, the 
model can be divided into several small elements. Different 
material properties will be allocated to each element to simu-
late the ideal metasurfaces. As shown in Fig. 2, the surface is 
divided into 25 units and the background media is water.

Specifically, the acoustic field is governed by

(4)�r = arcsin

(
�d�

2�ndx

)
.

(5)∇ ⋅

(
−
1

�c

(
∇pt − �d

))
−

k2
eq
pt

�c
= Qm,

Fig. 1  The generalized Snell’s law and acoustic metasurface: a without metasurface, b with metasurface
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where the total pressure ( pt ) is the sum of background sound 
pressure ( pc ) and scattered sound pressure ( p ), keq is wave 
number, �d represents the dipole domain source, Qm repre-
sents the monopole domain source, and �c is the density of 
the background media.

There are two initial and boundary condition constraints 
in this problem as illustrated in Fig. 2. The first one is 
the background sound pressure distribution, which is a 
plane wave propagating from the top to the bottom. The 
other one is the plane wave radiation around the quantity 
of interest. Besides, the displacement field of the solid 
structure needs to be calculated when solving for the sound 
field, which is a complex multi-physics problem consum-
ing expensive computing resources. The above FE-based 
acoustic metasurface model is constructed in COMSOL 
Multiphysics 5.4.0 using MATLAB script to carry out 
batch simulations and data extraction. The average time 
cost is 38.75 s for each HF sample and 17.5 s for each 
LF sample, and the computational cost ratio is about 2.25 
between them.

2.3  Acoustic field uniformity optimization

It is usually expected that the background incident sound 
wave is diffused uniformly such that the object (e.g., the 
Plate in Fig. 2) reflecting the sound wave will not be 
detected easily. By homogenizing the energy of the scat-
tered acoustic field around the object, acoustic cloaking 
can be achieved.

The mathematical model of this acoustic field uniform-
ity optimization problem can be described as

where var(P) represents the variance of the scattered acoustic 
pressure of the domain Ω , Xi

�
 and Xi

E
 represent the density 

and Young’s modulus of the ith element, �min and �max are the 
allowable densities range, Emax and Emin are the acceptable 
maximum and minimum Young’s modulus values, respec-
tively. As aforementioned described, the distribution of the 
scattered acoustic field will be most uniform when it has 
minimum variance.

3  Deep learning‑based optimization 
framework

The optimization of the scattered acoustic field demands to 
access the variance corresponding to the design variables, 
namely, requiring calculating the governing equation to eval-
uate the acoustic pressure distribution iteratively. However, 
such computation expensive procedures will turn the optimi-
zation process into a time-consuming problem and delay the 
design cycle. In contrast to executing complex FEM simula-
tion code repeatedly, the deep learning method is proposed 
to predict the scattered acoustic field directly concerning 
different inputs. Besides, to accelerate the efficiency, we put 
forward constructing a neural network model to generate 
various sets of design variables and optimize the acoustic 
field through backpropagation.

The proposed deep learning-based optimization frame-
work of scattered acoustic uniformity is illustrated in Fig. 3. 
This framework is composed of three procedures, i.e., data 
preparation, multi-fidelity neural network, and physical 
parameters’ optimization.

3.1  Data preparation

To reduce the simulation expenses of the database required 
to train the neural network model, HF and LF FEMs (e.g., 
with different mesh sizes) are constructed here. The HF 
model is more accurate but less calculation effective in con-
trast to the LF model. It should be noted that the Latin hyper-
cube sampling (LHS) scheme is utilized to cover the acoustic 
metasurfaces' physical parameters distribution space.

3.2  Multi‑fidelity neural network

Once the dataset is constructed, taking the units’ physical 
parameters as input, the neural network surrogate model is 
trained for predicting the scattered acoustic field. We proposed 

(6)

Find : X�,XE

Objective ∶ minimize var(P), P ∈ Ω

Subject to : �min ≤ Xi
�
≤ �max ∀i = 1, 2,…N

Emin ≤ Xi
E
≤ Emax ∀i = 1, 2,…N,

Fig. 2  Acoustic metasurface model
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MF-CCNN to exploit the relationship between HF and LF 
data, which will dramatically improve the accuracy at a lower 
construction cost.

3.3  Physical parameters’ optimization

The physical parameters’ optimization is composited of four 
steps. First, we construct a fully connected neural network 
model named physical parameters’ optimization neural net-
work to represent the densities and Young’s modulus of the 
element (see Fig. 4). The inputs and outputs of the physical 
parameters network depend on the specific problem. In this 
paper, e.g., the acoustic metasurface area is divided into 25 ele-
ments, so the input layer contains 50 neurons, and the inputs’ 
range from 1 to 50 ( x = [1,… 25,… , 50] ). The first part 
[1, 2,… , 25] represents the index of densities of these 25 ele-
ments, while the last part [26, 27,… , 50] represents the index 
of Young’s modulus of these 25 elements. Through some hid-
den layers, the outputs of the network also contain 50 values, 
i.e., 

[
�1, �2,… �25,E1,E2 …E25

]
 . The first part 

[
�1, �2,… �25

]
 

represents the densities of 25 elements and the second part [
E1,E2 …E25

]
 represents Young’s modulus of 25 elements. 

Therefore, the physical parameters’ optimization network can 
be seemed as

(7)
[
�1, �2,… �25,E1,E2 …E25

]
= f (1,… 25,… , 50),

where f  represents the network. The aim is to find an opti-
mal group of weights and biases which represents the opti-
mal densities and Young’s modulus of 25 elements. The 
parameters of the physical parameters’ optimization network 
are initialized randomly whose outputs are input into the 
trained multi-fidelity neural network. The acoustic field is 
then predicted by a multi-fidelity neural network and the 
uniformity of the acoustic field is calculated. To minimize 
the uniformity value of the acoustic field, the loss function 
is set as

Fig. 3  Optimization framework of scattered acoustic field uniformity

Fig. 4  Architecture of physical parameters’ optimization network
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where var(⋅) represents the variance and MF represents 
MF-CCNN. The only trainable parameters are of f  and 
MF-CCNN is frozen. Therefore, the optimization prob-
lem has been turned into training the physical parameters’ 
optimization network. Once converging, the outputs of the 
physical parameters’ optimization network are the optimal 
physical parameters of the acoustic metasurface. It should 
be emphasized that the inputs and outputs are not fixed 
according to the optimization problem, and the proposed 
can be extended to other fields conveniently.

Although heuristic algorithms such as genetic algo-
rithm (GA) are commonly used to solve optimization 
problems, most of them need to maintain a diversity of 
the population. GA usually initializes a variety of indi-
viduals and evaluates the fitness of every individual and 
mutates randomly. The such stochastic mutation leads to 
some unnecessary evaluation, which consumes much time. 
On the contrary, the proposed physical parameters’ opti-
mization network is a gradient-based method, and each 
iteration is stepped to the gradient orientation. Compared 
with heuristic algorithms, the physical parameters’ opti-
mization network is faster, which can help to cut down on 
the optimization time.

4  Multi‑fidelity neural network for scattered 
acoustic field prediction

This section describes the proposed MF-CCNN for predict-
ing the scattered acoustic field. As a comparison, we also 
outline two state-of-the-art neural networks that are available 
for fusing different fidelities data. They are the multi-fidelity 
physics-constrained neural network (MF-PCNN) [36] and the 
bi-fidelity transfer learning with partial network adaptation 
(BFTL-1) [34].

4.1  Scattered acoustic field prediction using 
MF‑CCNN

How to exploit the relationships between different fidelities 
data is the critical point of multi-fidelity surrogate modeling. 
Generally, the most common way is the auto-regressive 
scheme [40], in which the HF and LF data are expressed as 
the following relationship:

where yL and yH are LF and HF scattered acoustic field data, 
respectively; the correlation between 

{
yL, yH

}
 is quantified 

by the multiplicative correction coefficient k(x) , and �(x) 
is the additive scaled function, also called discrepancy 

(8)L = var(P) = var(MF(f (1, 2,… 50))),

(9)yH = k(x)yL + �(x),

function. The model based on Eq. (9) cannot handle complex 
nonlinear relationships. Whereas there always exist nonlin-
ear correlations between HF and LF data in engineering 
problems. Therefore, a more generalized formula is

where G(⋅) is the function mapping LF data and input x to 
the corresponding HF data. To adaptively find this relation-
ship, G(⋅) is decomposed into two sectors, thus [37]

where Gl describes the linear correlation and Gnl represents 
the nonlinear correlation, respectively, which is further 
rewritten as

where the hyper-parameter � represents the degree of linear 
correlation between HF and LF data. To study the Eq. (12) 
from data, we should construct a neural network to predict 
LF output ŷL , thus

From Eq. (13), G can be obtained if using two other NNs 
to fit Gl and Gnl , respectively. However, studying the rela-
tions between high-dimensional matrices ŷL and ŷH might 
cause information redundancy and introduce unnecessary 
model parameters. We introduce another network �  to 
extract the features of ŷL and rewrite Eq. (13) as

Based on this, the architecture of our proposed MF-CCNN 
for scattered acoustic field prediction is illustrated in Fig. 5. 
The model is composed of four components: the LF output 
( �L ), the LF feature extractor ( �L ), the linear ( Gl ), and the 
nonlinear ( Gnl ) correlation part between the LF output and HF 
output. Given an input x , �L will predict the LF result yL that 
is boxed by blue dashed lines in Fig. 5. The high-dimensional 
features are then extracted through �L and concatenated with 
the input x . The concatenated vector 

{
𝜓L

(
ŷL
)
, x

}
 is passed 

to two parallel modules. As shown in Fig. 5, the upper half 
of the network without activation function is utilized to learn 
the linear correlation. While the lower half with the activa-
tion function is used to learn the nonlinear relationship, and 
the weighted sum of the two outputs is the final prediction 
result. Inspired by Nie et al. [23], in which they established 
a model named SCSNet to predict the stress field of cantile-
vered structures. SCSNet is an “auto-encoder” like architec-
ture, which extracts the high-dimensional features of the orig-
inal image through convolutional layers and pooling layers, 
and then decodes the features concatenated with parameters 

(10)yH = G
(
x, yL

)
,

(11)G = Gl + Gnl,

(12)yH = �Gl

(
x, yL

)
+ (1 − �)Gnl

(
x, yL

)
, � ∈ [0, 1],

(13)ŷH = 𝛼Gl

(
x, ŷL

)
+ (1 − 𝛼)Gnl

(
x, ŷL

)
, 𝛼 ∈ [0, 1].

(14)
ŷH = 𝛼Gl

(
x,𝜓

(
ŷL
))

+ (1 − 𝛼)Gnl

(
x,𝜓

(
ŷL
))
, 𝛼 ∈ [0, 1].
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through some up-sampling layers and convolutional layers 
to reconstruct the stress field. Therefore, the architecture of 
“Fully Connected Layers-Up-sampling Layers-Convolutional 
Layers” is adapted in this paper to map the high-dimensional 
vector into the acoustic filed matrix, and the architecture of 
“Convolutional Layers-Pooling Layers” is used to encode the 
acoustic filed matrix into high-dimensional vector. The batch 
normalization layers are adopted to reduce the gradient van-
ishing problem.

With these basic architectures, �L utilizes the “Fully Con-
nected Layers-Up-sampling Layers-Convolutional Layers” 
to map the 51-dimensional physical parameters vector into 
LF acoustic field matrix. �L adopts the “Convolutional Lay-
ers-Pooling Layers” to extract the high-dimensional feature 
of the LF result and then concatenate it with the inputs. Gl 
and Gnl both use the “Fully Connected Layers-Up-sampling 
Layers-Convolutional Layers” to reconstruct the final 
matrix. Gl contains no nonlinear activation function to learn 
the linear relationship between HF and LF data, whereas Gnl 
learns the nonlinear relationship.

For a neuron, its output can be expressed as

where xi is the input of the neurons in the ith layer; �i is the 
weight between the ith layer and jth layer neurons, and � 
is the activation function that makes the layers nonlinear. 

(15)yj = �

(∑(
�ixi + bj

))
,

Therefore, Gl will only be trained to learn the linear cor-
relation between 

{
𝜓L

(
ŷL
)
, x

}
 and ŷH , while Gnl will only be 

used to fix the nonlinear function. In this work, we mainly 
study the mapping of physical parameters to the acoustic 
field, thus the model input is the parameter vector, and the 
output is the field matrix.

Specifically, the output ŷL of �L should be as close as 
possible to the real LF sample, and the predicted value ŷH 
should also approximate the corresponding real HF sam-
ple. These yield two types of error, the LF error term, 
and the HF error term, which need to be considered. We 
combine them and rewrite the loss function as

where ŷL
i
 and ŷH

i
 represent the real LF and HF data, respec-

tively; � is the corresponding weight coefficient; (1 − �) is 
the weight coefficient of the HF output error term; ‖⋅‖ rep-
resents the Euclidean distance.

In the multi-fidelity surrogate modeling problems, it is 
commonly assumed that there are massive LF samples but 
limited HF data. However, MF-CCNN needs to use both 
LF and corresponding HF data during the training period. 
To solve this problem, referring to Zhou et al. [33], the 
lacking portion of the HF data is filled with correspond-
ing LF data, which is called “pseudo” HF data, as shown 
in Fig. 6. To distinguish these data, each sample point is 

(16)L = 𝛾
‖‖‖ŷ

L
i
− yL

‖‖‖ + (1 − 𝛾)
‖‖‖ŷ

H
i
− yH

‖‖‖,

Fig. 5  Architecture of proposed MF-CCNN
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assigned a different weight, thus the loss function can be 
rewritten as

where � is the weight coefficient of each sample point. For 
“pseudo” HF data, � is set close to 0, which means that the 
former won’t have effects on the parameter updating of Gl 
and Gnl.

4.2  Scattered acoustic field prediction using 
MF‑PCNN

This section briefly introduces the basic principles of MF-
PCNN, more details are available in Ref. [36]. Here the 
physics-constrained part is discarded cause we only consider 
a purely data-driven method. The scheme of MF-PCNN is 
analogous to the widely used multi-fidelity Gaussian process 

(17)L = 𝛽L
i
𝛾
‖‖‖ŷ

L
i
− yL

‖‖‖ + 𝛽H
i
(1 − 𝛾)

‖‖‖ŷ
H
i
− yH

‖‖‖,

modeling. As shown in Fig. 7, The MF-PCNN is combined 
with an LF neural network (LF-PCNN), an HF neural net-
work (HF-PCNN), and a discrepancy artificial neural net-
work (DANN).

The LF-PCNN and HF-PCNN are trained with LF and 
HF data, respectively. Whereas the DANN is trained with 
the discrepancy between the prediction results of HF-PCNN 
and LF-PCNN. The prediction results of LF-PCNN and DF-
PCNN are added to obtain the final prediction result.

4.3  Scattered acoustic field prediction using BFTL‑1

Transfer learning is one of the commonly utilized methods 
in deep learning, which can effectively reduce the cost of 
acquiring data by reapplying the model trained on one task 
for another task. At present, some scholars have studied 
the feasibility of using the transfer learning method to fuse 
multi-fidelity data. Generally, the neural network can learn 
the high-dimensional features of the data under its powerful 
feature extraction ability. The model is trained on the LF 
data to map from input to output first. Then the parameters 
of the LF network can be fine-tuned using HF data. Here, we 
adopt the BFTL-1 model proposed by De et al. [34]

5  Algorithm details and discussion

We first emulate HF and LF data based on the finite element 
model of the acoustic metasurface in this section. Then the 
obtained data is processed into training and testing datasets. 
To demonstrate the effectiveness of the proposed multi-fidel-
ity approach, MF-CCNN, MF-PCNN, and BFTL-1 models 
are also compared with neural networks only trained with 
single-fidelity data under a different number of samples. 
Finally, we combine the physical parameters’ optimization 
neural network with the well-trained MF-CCNN to obtain 
the approximately optimal physical parameters and compare 
it with the GA.

Fig. 6  Handling strategies for mismatched data in MF-CCNN

Fig. 7  Algorithm diagram of 
the MF-PCNN
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5.1  Dataset generation and processing

In this study, one of the critical points is the generation of 
data with different fidelities. There are different categories of 
fidelities because HF and LF are relative, such as meshes of 
varying grid scales, different finite element solvers, iteration 
times, etc. Here, the LF model is obtained by magnifying 
the mesh size. Figure 8a, b shows the meshes of the HF and 
LF models, respectively. The simulation frequency studied 
here is 500 Hz. The dimensions of the plate are 10 × 2 m, 
and the thickness of the metasurface is 0.08 m. The meta-
surface domain of the HF and LF models are divided into 
6254 triangular meshes whose maximum side length is 0.02 
m, and the other parts are divided into triangular meshes 
with a maximum length of 0.1 and 1.5 m, respectively. The 
total elements for these two models are 97,408 and 20,469 
respectively. The mesh convergence analysis for finite ele-
ments is shown in Fig. 9, indicating that the HF model has 
reached convergence. The computational cost ratio of an HF 
sample and an LF sample is about 2.25.

The Young’s modulus of the plate is 1.08 × 109 Pa, the 
Poisson’s ratio is 0.34, and the density is 4500 kg/m3. 
While the density of the metasurface elements varies from 
333.33 to 2000 kg/m3, the modulus ranges from 7.5 × 108 to 
1.35 × 109 Pa. Specifically, the material properties of each 
unit are randomly selected within the range.

The Multifrontal Massively Parallel Sparse (MUMPS) 
frequency-domain solver is utilized to simulate a randomly 
generated metasurface, whose parameter definitions are 
shown in Table. 1. The distributions of the scattered acous-
tic field without and with metasurface are shown in Fig. 10. 
It can be concluded that the application of metasurface has 
a certain influence on the acoustic wave.

To generate the regular domain data required by CNNs, 
the regular grid points are extracted by interpolation from 

the unstructured finite element meshes, as illustrated in 
Fig. 11. Notably, the larger the dimension of the extracted 
grid matrix, the smaller the discrepancy between the 
obtained and the original field. A suitable dimension 48 × 64 
is selected here, which could approximate the original 
acoustic field. As shown in Fig. 11, the distribution trend of 
extracted HF and LF data is similar to that of the real field, 
with only less accuracy loss.

The absolute errors of HF and LF data are plotted in 
Fig. 12. It can be seen that there are obvious discrepancies 
between HF and LF data and nonlinear correlations. While 
the Pearson correlation coefficients of HF and LF data are 
above 0.8 as shown in Fig. 13a. Since there are 3072 points 
in total, to make it clearer, the scatter figure belonging to 
the point with the lowest value, which is in the top left of 
the matrix is plotted. As can be seen from Fig. 13b, there is 
a strong linear relationship between HF and LF data, and a 
slight nonlinear relationship. The remained points’ scatter 
plots had also been examined, and all of them demonstrate 

Fig. 8  Metasurface FEM mesh: a HF model, b LF model

Fig. 9  Finite-element analysis convergence
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this conclusion. A test of significance of the Pearson’s coef-
ficient also needs to be executed to further check the reliabil-
ity of the above result. Cause the t-test is used for Pearson’s 
coefficient, first, whether the data satisfy the precondition is 
checked. The preconditions are as follows:

(1) The overall distribution is normal, which is also a 
precondition of many hypothesis tests. To do so, the histo-
grams of both HF data and LF data are plotted, and Fig. 13c, 
d illustrates which of the point in the top left corner. Two 
probability density curves satisfy the normal distribution.

Table 1  The material 
parameters of metasurface

Element 
number

Density/(kg/m3) Modulus/(MPa) Element 
number

Density/(kg/m3) Modulus/(MPa)

1 1.86 6.98 14 1.27 13.11
2 1.01 11.19 15 1.97 13.38
3 1.58 2.54 16 1.93 11.08
4 0.67 10.50 17 0.36 6.52
5 0.54 5.76 18 1.45 4.35
6 0.85 7.43 19 0.67 8.99
7 0.74 8.80 20 0.89 10.17
8 0.45 9.60 21 1.80 1.89
9 1.80 11.12 22 1.06 3.59
10 1.26 4.89 23 1.61 4.48
11 1.54 3.34 24 1.86 2.48
12 1.69 10.86 25 0.82 7.16
13 1.15 10.36

Fig. 10  Scattered sound pressure level field. a Without metasurface, b with metasurface

Fig. 11  Extracted scattered acoustic field. a LF, b HF
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(2) The value of data should not contain noise, which is 
also satisfied in the dataset.

(3) Every set of samples is independent and identically 
distributed. The LHS used here satisfies this requirement.

Pearson’s coefficient could be constructed as a statisti-
cal parameter t  , which is formulated as

where n is the sample number and r is Pearson’s coeffi-
cient. t obeys a t-distribution with freedom of two. The null 
hypothesis is that HF and LF data have no correlation, and 
the alternative hypothesis is that they do have an apparent 
correlation. Under a confidence level of 99%, the p-value is 
0.01. The maximum p-value of the results is 2.24 × 10−134 , 
which is much less than 0.01, indicating that the hypothesis 
that LF data can provide certain trend information for HF 
data is reasonable. In this paper, the LHS scheme is uti-
lized to generate 500 samples within the parameters range 
to ensure uniformity in the design space. Then each sample 
is simulated to generate both HF and LF data.

The 51-dimensional vector representing the density and 
modulus of the 25 elements and the simulation frequency is 
input to the neural network, which is also standardized by

where meanj(�ij) is the average value of the jth mate-
rial property of 500 samples, and stdj(�ij) is the standard 
deviation.

(18)t = r ⋅

√
n − 2

1 − r2
,

(19)�ij =
�ij −meanj

(
�ij
)

stdj
(
�ij
) , i = 1,… , 500; j = 1,… , 50,

Fig. 12  HF and LF data error distribution

Fig. 13  a Pearson correlation 
coefficient of HF and LF data at 
each coordinate point. b Scatter 
plot between HF and LF data of 
the point in the top left of the 
matrix. c Probability density 
distribution of LF data. d Prob-
ability density distribution of 
HF data
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5.2  Performance of MF‑CCNN

5.2.1  Implementation details of MF‑CCNN

As illustrated in Fig. 5, the 51-dimensional input vec-
tor is converted into a 3,072-dimensional vector through 
two fully connected layers, which is then reshaped into a 
64 × 6 × 8 feature map. After three up-sampling and con-
volution layers, the feature map size is 48 × 64 (i.e., yL ). 
To obtain accordant features between HF and LF data in 
MF-CCNN, the convolution kernel size and stride of each 
convolutional layer are set to 3 and 1, respectively. Then, 
the features of the LF output are extracted through three 
convolution and pooling layers, obtaining a 64 × 6 × 8 
feature map. The feature map is then compressed into a 
30-dimensional feature vector through a fully connected 
layer, and spliced into an 81-dimensional vector with the 
input. The last two branches consisted of fully connected, 
up-sampling, convolution layers, and the feature map size 
is 3072, 64 × 6 × 8 , 32 × 12 × 16 , 16 × 24 × 32 , 48 × 64 . 
Batch normalization is adopted after each layer and the 
activation function is LeakyReLU ( � = 0.1 ). The final 
two feature maps are weighted and added element-wise to 
obtain HF prediction.

Since the relationship between HF and LF data is 
unknown here, the value of hyper-parameters � and � cannot 
be determined. � determines the linear and nonlinear corre-
lation between HF and LF data, and � determines the weights 
of HF loss and LF loss. If � is not selected properly, it will 
be hard for Gnl to learn the correct nonlinear relationship 
between HF and LF data. If � is not selected properly, the 
network will tend to predict the LF result more accurately 
and neglect the HF result, and vice versa. To be exact, the 
model could correctly learn the linear and nonlinear relation-
ship of them, which makes the prediction accuracy the high-
est. Therefore, we can set � and � as two parameters which 
tuned by the network itself. But in practice, it is found that 
this method will make the loss function curve unstable and 
the model difficult to converge. Besides, the results obtained 
from each training process are quite diverse. For the sake of 
acquiring suitable � , the following methods are introduced.

Design the orthogonal experiment, which � and � is 
divided into five levels: 0, 0.2, 0.4, 0.6, and 0.8. In general, 
it is assumed that there is only a small number of HF data, 
whereas massive LF data is available. Therefore, 450 LF 
and the nested 90 HF randomly selected samples are set as 
the training samples. The number ratio of the training set 
and validation set is 9:1. The other 50 HF samples compose 
the testing set. The mean relative error (MRE) is used as the 
evaluation metric, and each parameter is trained three times 
to obtain the best result, as shown in Table. 2. The mean 
main effect diagram is shown in Fig. 14. It can be seen that 
MRE reaches the smallest when � = 0.2 and � = 0.8.

To ensure the best accuracy of this model, it is trained 
to converge with the initial � = 0.2 , and then update � as a 
trainable parameter with a lower learning rate. The � after 
training is selected as the final value. The other hyper-
parameters are set as follows: the batch size is set as 8; the 
Adam optimizer is utilized; the initial value of the dynamic 
learning rate is set to be 0.01 and reduced to 0.5 times when 
the error does not decrease for 10 iterations. The maximum 
number of iterations is 500. The best result is saved after 
each epoch, and the early-stopping strategy is also used. � 
is used to distinguish the HF and “pseudo” HF data. There-
fore, the value of � is not as important to the MF-CCNN as 
� and � . For “pseudo” HF data, it is set as close to zero to 
not make it to disturb the training process. For HF data, it is 
set a little bigger than one to make the network concentrate 
more on HF data whose amount is much less than LF data. A 
value slightly less than one is set for LF data to balance the 
importance of HF and LF data. As for the hyper-parameter 
� , it is set to be 0.5 for LF data and 2 for the HF data, while 
the “pseudo” HF’s is set to 1 × 10−5.

5.2.2  Training details of other methods

As described in Sect. 4, the MF-PCNN consists of LF-PCNN, 
HF-PCNN, and DANN, whose network architectures are the 
same as �L part of MF-CCNN. The other training strategies are 
consistent with MF-CCNN except for the batch size (i.e., 2) 
and the initial learning rate (i.e., 0.005). LF-PCNN is trained 

Table 2  Orthogonal experiment results

� MRE (%)

� = 0 � = 0.2 � = 0.4 � = 0.6 � = 0.8

0 23.46 23.70 23.30 23.25 23.00
0.2 24.33 24.22 23.51 22.57 23.89
0.4 24.37 24.56 23.59 23.69 23.29
0.6 26.13 23.81 22.59 23.15 22.99
0.8 25.21 23.33 23.05 22.43 22.70

Fig. 14  Mean effect diagram
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with 450 LF and HF-PCNN is trained with 90 HF data first, 
and then the trained LF-CNN and HF-CNN are used to predict 
the output ŷL and ŷH of 450 samples, respectively. The DANN 
is trained with the discrepancy between ŷL and ŷH . We can get 
the final output of MF-PCNN by simply adding the LF-PCNN 
and DANN predictions.

The architecture and hyper-parameters of BFTL-1 are iden-
tified with the MF-PCNN. 450 LF samples are utilized to train 
the network first, and then fine-tuning the weights and biases 
with the learning rate of 5 × 10−4 by 90 HF samples. In addi-
tion, the single-fidelity neural network is also trained with the 
same architecture, datasets, and hyper-parameters.

5.2.3  Scattered acoustic field prediction result discussion

To compare the performance of the five models fairly, each 
model is trained three times in the same training environment 
(i7-9700 K, RTX 2080, PyTorch 1.9.0) and the average results 
are recorded. Mean absolute error (MAE), mean max abso-
lute error (MMAE), and relative error (RE) are utilized as the 
evaluation metrics, which are given by

(20)MAE =
1

Nsamples

Nsamples∑

i=1

mean
(||yi − ŷi

||
)

(21)MMAE =
1

Nsamples

Nsamples∑

i=1

max ||yi − ŷi
||

where Nsampels represents the number of testing samples; |⋅| 
is the absolute error and ‖⋅‖ is the L2 norm, i.e., Euclidean 
distance; yi and ŷi are the ground truth and predicted acoustic 
field of the ith testing sample.

Three randomly selected samples from the testing data 
and the real acoustic field and predicted results of differ-
ent models are shown in Figs. 15, 16 and 17. It is readily 
observed that the prediction results of the five models are 
consistent with the real acoustic field distribution, which 
reflects the broad application prospects of the data-driven 
deep learning method of sound field prediction. The devia-
tion of HF-CNN is the largest, and the discrepancy is par-
ticularly obvious in the area near the plate. The prediction 
result of LF-CNN deviates greatly from the ground truth as 
well. On the contrary, MF-CCNN, MF-PCNN, and BFTL-1 
can capture more details of the image. The outputs of MF-
PCNN and BFTL-1 are similar, but there are still large dis-
crepancies in some regions where the gradients vary sharply. 
The prediction precision of MF-CCNN is the best, whose 
result is closer to the real data even in the area near the plate. 
Similar conclusions can also be generalized from Figs. 16 
and 17. The prediction result of HF-CNN remains almost 
unchanged in the three samples, indicating the poor gener-
alization ability of HF-CNN.

Figures 18, 19 and 20 plot the error diagrams between the 
predictions and the ground truth of the three samples. The 

(22)RE =
‖‖yi − ŷi

‖‖
‖‖yi‖‖

,

Fig. 15  Comparison between different model predictions (sample 1) a ground truth, b HF-CNN, c LF-CNN, d MF-CCNN, e MF-PCNN, f 
BFTL-1
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errors of HF-CNN are the largest, whereas the discrepancies 
of MF-CCNN are the smallest among them. It is worth not-
ing that all the error distributions are spokewise and becom-
ing significantly larger where the gradients change sharply, 
indicating that the prediction performance of the model for 
severe numerical fluctuations needs to be improved. The 
probability density function (PDF) of absolute errors of five 

model predictions (sample 1) is shown in Fig. 21. It can be 
concluded that the MF-CCNN yields the smallest absolute 
errors among them, whereas the absolute errors of HF-CNN 
are the highest. Most of the absolute errors vary from 0.05 
to 0.1.

To quantify the comparison, we calculate the MAE, 
MMAE, and RE of each model, as shown in Table 3. The 

Fig. 16  Comparison between different model predictions (sample 2) a ground truth, b HF-CNN, c LF-CNN, d MF-CCNN, e MF-PCNN, f 
BFTL-1

Fig. 17  Comparison between different model predictions (sample 3): a ground truth, b HF-CNN, c LF-CNN, d MF-CCNN, e MF-PCNN, f 
BFTL-1
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bold value indicates that it is the best value in this column. 
In general, The MF-CCNN achieves the smallest MAE, 
MMAE, and RE among the five models, indicating that the 
prediction results of MF-CCNN are the closest to the real 
data. The evaluation metrics of HF-CNN are the worst, indi-
cating that only using limited HF data cannot obtain a model 
with high accuracy and excellent generalization ability. The 
MAE, MMAE, and RE of LF-CNN are all better than HF-
CNN. Because massive data samples could reduce the error 
and improve the generalization ability of the neural network. 
Therefore, improving the data quantity and quality is par-
ticularly important for deep learning models. Compared with 
MF-PCNN and BFTL-1, MF-CCNN can better learn the 
linear and nonlinear relationship between HF and LF data, 
thereby improving the accuracy of the neural network.

5.2.4  Effect of the LF and HF samples number ratio

This section will evaluate the effect of the LF and HF sam-
ple number ratio � on different methods. A series of experi-
ments are conducted using 450 LF samples and selecting 

the � value of 2, 3, 4, 5, 6, 7, 8, 9, 10, and 15. Each model 
is trained three times and estimated with the average MRE.

Table 4 and Fig. 22 show the MRE of each model when 
the number of HF samples varies. The error of HF-CNN is 
still far greater than that of other methods with the HF data 
size gradually increasing. The neural network model inte-
grating HF and LF data can dramatically improve the pre-
diction precision. The MF-CCNN achieves the best results, 
whose precision is ahead of MF-PCNN and BFTL-1 when 
the sample size ratio is lower than 8. The error of MF-
PCNN and BFTL-1 fluctuates when the sample number 
increases, which proves that MF-CCNN can utilize the 
correlation between different fidelities data more effec-
tively and has a better stability. According to the previous 
analysis, these two methods need to learn complex non-
linear functions instead of learning linear and nonlinear 
relationships between the HF and LF data.

Fig. 18  Absolute errors of different models (sample1): a HF-CNN, b LF-CNN, c MF-CCNN, d MF-PCNN, e BFTL-1

Fig. 19  Absolute errors of different models (sample1): a HF-CNN, b LF-CNN, c MF-CCNN, d MF-PCNN, e BFTL-1

Fig. 20  Absolute errors of different models (sample1): a HF-CNN, b LF-CNN, c MF-CCNN, d MF-PCNN, e BFTL-1
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5.3  Deep learning‑based acoustic field uniformity 
optimization

5.3.1  Implementation of physical parameters’ optimization 
neural network

A fully connected neural network architecture model with 
three hidden layers and one hundred neurons is constructed 

to generate a different combination of the units’ physical 
parameters. As described in Sect. 2.3, there are 50 design 
variables including 25 units’ densities and Young’s modu-
lus. The input is a fixed integer sequence ranging from 1 
to 50, representing the index of each parameter. The out-
put layer consists of 50 neurons with Sigmoid activation 
to predict the scaling factor between the maximum and 
minimum allowance values.

The generated physical parameters concatenated with 
the frequency value are then input into the well-trained 
MF-CCNN to predict the scattered acoustic field, whose 
variance is then extracted. To minimize the obtained vari-
ance, parameters of physical parameters’ optimization 
neural network will be upgraded through backpropagation.

Fig. 21  PDF of absolute errors of 5 model predictions

Table 3  Comparison results of different models for acoustic field pre-
diction

Model MAE MMAE RE (%)

Mean Max Min

MF-CCNN 0.0794 0.5548 20.55 36.20 11.73
MF-PCNN 0.0980 0.5799 21.33 38.38 11.48
BFTL-1 0.0859 0.5770 21.52 41.78 11.73
LF-CNN 0.1005 0.6315 25.81 41.26 17.19
HF-CNN 0.1253 0.7614 31.55 55.42 19.53

Table 4  The MRE with various ratios of LF and HF samples sizes

� MF-CCNN MF-PCNN BFTL-1 HF-CNN

2 18.20 21.21 21.58 24.49
3 18.95 21.66 21.58 25.84
4 19.87 21.20 21.87 26.88
5 20.55 21.33 21.52 31.55
6 20.42 21.57 21.33 32.00
7 21.48 21.76 21.53 32.21
8 20.65 22.20 21.78 33.25
9 21.83 21.99 21.86 41.17
10 21.41 22.04 21.78 40.00
15 23.71 22.53 21.93 71.26

Fig. 22  The MRE with the various ratio of LF and HF sample sizes
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5.3.2  Result of acoustic field uniformity optimization

We use another 9000 LF samples and 4500 HF samples to 
retrain the MF-CCNN to obtain a model with better gener-
alization capability, and the MAE is only 0.041 evaluated on 
the testing dataset with 1000 samples. Based on the trained 
MF-CCNN, the approximately optimal physical parameters 
are attained by the physical parameters’ optimization neural 
network through 2000 iterations, costing only 20.03 s.

The comparison between the obtained FEM simulation 
and MF-CCNN prediction is shown in Table 5 and Fig. 23. 
The high similarity between the interpolation prediction 
result of MF-CCNN and the ground truth proves the great 
generalization ability. The variance is 3.62% lower than the 
minimum value of these 10,000 samples and the relative 
error between MF-CCNN prediction and FEM simulation 
is only 3.71%. which demonstrates that the proposed deep 
learning-based multi-fidelity optimization framework can 
realize accurate and rapid optimization of acoustic metasur-
face scattered field uniformity. We also compare it with the 
GA optimization method, i.e., replace the physical param-
eters’ optimization neural network with GA. The population 
size is 3000 and the number of iterations is 500. The result 
of the proposed physical parameters’ optimization neural 
network is consistent with GA. While the time cost is only 
8% of the latter cause the former does not require an objec-
tive value assessment for each individual. It is worth noting 
that in addition to the variance, other physical information 

can be extracted from the prediction sound field, which can 
then be used as our optimization objective for the design of 
the metasurface.

6  Conclusions

In this paper, the scattered acoustic field uniformity opti-
mization problem is studied with the proposed deep learn-
ing-based multi-fidelity optimization framework. The 
multi-fidelity composite convolutional neural network (MF-
CCNN) method is proposed to predict the high-dimensional 
scattered acoustic field distribution of metasurface to achieve 
higher precision at a lower data cost. This method first pre-
dicts the LF outputs and then maps the LF results to HF 
results. Specifically, a sub-network is constructed to extract 
the features of the LF predictions to reduce information 
redundancy, and another two are utilized to learn the lin-
ear and nonlinear correlation between them, respectively. 
In addition, a fully connected neural network named physi-
cal parameters’ optimization neural network is proposed 
to optimize the physical parameters with the prediction of 
MF-CCNN to obtain the approximately minimum variance.

The proposed MF-CCNN is compared with two multi-
fidelity neural networks and the single-fidelity network 
on datasets of different sizes. We also apply the proposed 
methodology to optimize the scattered acoustic uniformity. 
Following conclusions can be drawn: (1) the constructed 
multi-fidelity neural network MF-CCNN could realize a 
fast and accurate prediction of the high-dimensional scat-
tered acoustic field. (2) The constructed multi-fidelity neural 
networks MF-CCNN, MF-PCNN, and BFTL-1 could effec-
tively improve the prediction accuracy. Compared with the 
model based on single-fidelity data, the mean absolute error 
is reduced by 20% at least. (3) The mean absolute error of 
the constructed MF-CCNN is 7.5% lower compared to MF-
PCNN and BFTL-1. It is demonstrated that the proposed 

Table 5  Variance of optimal physical parameters

Initial minimum 
variance

FEM simulation MF-
CCNN 
prediction

Time (s)

GA 0.2292 0.2210 0.1870 242.59
Ours 0.2209 0.2127 20.03

Fig. 23  Obtained optimal scattered acoustic field. a FEM simulation, b MF-CCNN
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scheme can effectively learn linear and nonlinear relation-
ships between HF and LF data. (4) The prediction accuracy 
of the constructed MF-CCNN gradually increases as the 
amount of HF data increases, which proves that the pro-
posed method has excellent robustness. (5) The variance 
after optimization was reduced by 3.62% and the time cost 
was only 8% of GA, demonstrating the efficiency and accu-
racy of physical parameters’ optimization neural network.

As part of future research, increasing the width and depth 
of the model and adding residual connections to further 
improve the prediction accuracy of the model will be inves-
tigated. At the same time, incorporating physical constraints 
[41, 42] will be helpful to reduce the quality requirement of 
the dataset.
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