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Abstract
Surrogate model-assisted multi-objective genetic algorithms (MOGA) show great potential in solving engineering design 
problems since they can save computational cost by reducing the calls of expensive simulations. In this paper, a two-stage 
adaptive multi-fidelity surrogate (MFS) model-assisted MOGA (AMFS-MOGA) is developed to further relieve their compu-
tational burden. In the warm-up stage, a preliminary Pareto frontier is obtained relying only on the data from the low-fidelity 
(LF) model. In the second stage, an initial MFS model is constructed based on the data from both LF and high-fidelity (HF) 
models at the samples, which are selected from the preliminary Pareto set according to the crowding distance in the objec-
tive space. Then the fitness values of individuals are evaluated using the MFS model, which is adaptively updated according 
to two developed strategies, an individual-based updating strategy and a generation-based updating strategy. The former 
considers the prediction uncertainty from the MFS model, while the latter takes the discrete degree of the population into 
consideration. The effectiveness and merits of the proposed AMFS-MOGA approach are illustrated using three benchmark 
tests and the design optimization of a stiffened cylindrical shell. The comparisons between the proposed AMFS-MOGA 
approach and some existing approaches considering the quality of the obtained Pareto frontiers and computational efficiency 
are made. The results show that the proposed AMFS-MOGA method can obtain Pareto frontiers comparable to that obtained 
by the MOGA with HF model, while significantly reducing the number of evaluations of the expensive HF model.

Keywords Multi-fidelity surrogate model · Model management · Prediction uncertainty · Simulation-based design · 
Optimization

1 Introduction

Practical engineering design optimization problems usually 
contain several objectives, in which at least two of them 
are conflicting in nature. Therefore, solving these prob-
lems generally results in multiple optimal solutions termed 
as Pareto-optimal solutions. Multi-objective genetic algo-
rithms (MOGAs) have been widely used for obtaining these 
Pareto-optimal solutions, due to its advantages including 
ease of implementation, no need of the gradient information 
of the objective functions or constraints, and great ability 

to handle problems with nonconvex Pareto fronts. Despite 
these advantages, it is still impractical for them to solve 
engineering problems that involve time-consuming simula-
tions. This is because MOGAs usually require a large num-
ber of fitness evaluations to locate near-optimal solutions. 
A promising way to improve the efficiency of such algo-
rithms is to incorporate the surrogate model, also referred 
as the metamodel or approximation model, in evolutionary 
computations for reducing the computationally expensive 
exact fitness evaluations [1, 2]. The incorporations of sur-
rogate models, e.g., Gaussian process (GP) model [3], neu-
ral network (NN) [4], radial basis function (RBF) [5, 6], 
could be achieved in almost all elements of the evolution-
ary computations, which can be classified into three types 
[7]. The first incorporation strategy is termed as surrogate 
model-assisted migration, in which individuals approxi-
mated with different levels of accuracy can migrate from 
one subpopulation to another. The second one is termed as 
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surrogate model-assisted initialization and genetic opera-
tions [8]. Since initialization, crossover, and mutation are 
usually implemented randomly, it is believed that using the 
surrogate model for initializing the populations and guiding 
the crossover and mutation would be beneficial for accelerat-
ing the convergence rate. The last one is termed as surrogate 
model-assisted fitness evaluations, in which the surrogate 
model is constructed to replace the time-consuming simula-
tions aiming at reducing the number of fitness calculations 
[9–11]. Since the surrogate model-assisted fitness evalu-
ations can lead to the best performance among the above 
three strategies, there has been widespread interests in these 
approaches [12–15].

The surrogate model-assisted fitness evaluation 
approaches can be broken down into two distinct modes, 
off-line (non-adaptive) mode and on-line (adaptive) mode 
[16–21]. In the off-line mode, a pre-specified amount of sam-
ple points are employed to build a surrogate model, which 
is used for the fitness evaluations in the evolutionary com-
putation subsequently. The main shortcoming of the off-line 
mode is that it is difficult to predetermine the proper sample 
size for obtaining an accurate surrogate model, which will 
lead to the reduction of the number of fitness evaluations 
not be significant [22]. On the other hand, the on-line mode 
generates an initial surrogate model first and then adaptively 
updates the surrogate model following some model manage-
ment strategies during the evolutionary computation. Com-
pared with the off-line mode, the on-line mode can make use 
of the knowledge from previous iterations and is reported 
to be more efficient for evolutionary algorithms [23]. The 
core factor that determines the success of on-line surrogate 
model-assisted fitness evaluations is the model management 
strategy, i.e., to update the surrogate model in the evolu-
tionary computation, which individuals should be selected 
to be evaluated using the exact fitness functions. The most 
straightforward idea is to evaluate the individuals that are 
potentially with the best fitness values, the largest degree 
of prediction uncertainty, maximum space-filling charac-
teristic, or individuals that can make a trade-off between 
the fitness values and surrogate model accuracy. Randomly 
selecting individuals to evaluate with the real fitness func-
tion in each generation for updating the surrogate model 
was also studied. Preliminary efforts have demonstrated that 
these management strategies with a pre-defined updating 
number may cause oscillation because the prediction accu-
racy of the surrogate model may vary significantly during 
optimization. To address this issue, Li et al. [8] proposed an 
effective kriging surrogate model-assisted MOGA, in which 
an objective measure is developed to select the individuals 
whose dominated states will be changed because of the pre-
diction error from the surrogate model. Furthermore, Li [17] 
improved this method by introducing an enhanced quantita-
tive switching criterion.

Although the previous work demonstrated the obvious 
merits of surrogate-assisted MOGAs, for the computation-
ally expensive high-fidelity (HF) models, even performing 
the number of simulations needed for constructing a sur-
rogate model could be too expensive [24–32]. To further 
alleviate the high computational cost in HF analyses, an 
efficient alternative termed as the multi-fidelity surrogate 
(MFS) modeling is recognized recently. In MFS, an assump-
tion is made that there exists a low-fidelity (LF) model, 
which is less accurate compared with the corresponding HF 
model but is considerably less computationally demanding 
[33–36]. By integrating the information from both LF and 
HF models, i.e., the LF model is used to provide the trend 
of the quantity of interests (QoI), whereas a small number 
of HF simulations are used to guarantee the prediction accu-
racy in the critical subspaces, MFS can make a trade-off 
between high accuracy and low computational expense [28, 
37–40]. The most notable of MFS is the cokriging surrogate 
model developed by Kennedy and O’Hagan [41], where a 
Bayesian method was proposed for predicting the responses 
of the HF model with the assistance of several LF models. 
Han et al. [36] developed an extended cokriging surrogate 
model in which the cokriging weights were refined and a 
scaling factor was introduced to consider the effects of LF 
data on the prediction of the HF model. Furthermore, Zhou 
et al. [42] developed an uncertainty quantification approach 
to concurrent treat the effects of uncertainties from design 
variables and MFS in the robust optimization. Nguyen et al. 
[43] combined the MFS with the multidisciplinary feasible 
approach to the ease the computational burden caused by the 
high-fidelity analysis in multidisciplinary design optimiza-
tion (MDO).

Though MFS has been reported as being used in engi-
neering design, its combination with the multi-objective 
evolutionary algorithms is scarce. When the computational 
cost of the LF model should be taken into consideration, Shu 
et al. [44] proposed an on-line MFS-assisted MOGA, which 
can decide whether the LF model or the HF model would 
be selected to analyze for a sample point, recently, while 
in the case of that the computational cost of the LF model 
can be ignored compared with the HF model, Liu et al. [45] 
combined the MFS with MOGA, in which the MFS was 
constructed based on the multiplicative scaling function, and 
successfully applied it to light-weight design of a stiffened 
panel. However, the prediction uncertainty introduced by the 
MFS, which can have a significant effect on the accuracy of 
the obtained Pareto set, was ignored in this approach [46]. 
Therefore, in this work, a two-stage adaptive MFS-assisted 
MOGA (AMFS-MOGA) is developed to improve the accu-
racy for combining the MFS with MOGA. In the warm-up 
stage, a preliminary Pareto set is obtained relying only on 
the data from the LF model. In the second stage, an initial 
MFS is constructed based on the data from both LF and HF 
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models at the samples, which are selected from the prelimi-
nary Pareto set according to the crowding distance in the 
objective space. Then the fitness values of individual are 
evaluated by the MFS, which is adaptively updated accord-
ing to two developed strategies, individual-based updating 
strategy and generation-based updating strategy. The former 
considers the prediction uncertainty from the MFS, while 
the latter takes the discrete degree of the populations into 
consideration. The performance of the proposed AMFS-
MOGA approach is illustrated using three benchmark test 
functions and the design optimization of the hull of an 
autonomous underwater vehicle. The comparisons between 
the proposed AMFS-MOGA approach and some existing 
approaches considering the quality of the obtained Pareto 
frontiers and computational efficiency are made. The merits 
of AMFS-MOGA approach are analyzed and summarized.

The remainder of this paper is organized as follows. 
In Sect. 2, the background and terminology of the multi-
objective optimization and multi-fidelity surrogate model 
are presented. Details of the proposed AMFS-MOGA 
are introduced in Sect.  3. In Sect.  4, the comparison 
results between the proposed approach and some exist-
ing approaches on three benchmark test functions and a 
real-world engineering design problem are presented. In 
Sect. 5, the concluding remarks and possible future work 
are given.

2  Background and terminology

2.1  Multi‑objective optimization problems (MOPs)

Generally, MOPs can be formulated as,

where F(x) denotes the objective function vector, m denotes 
the number of objective functions, x denotes the design vari-
able vector with the lower and upper bounds are xlb and xub , 
respectively. gj(x) is the jth constraint. Since at least two 
of the objective functions are conflicting, therefore, solving 
Eq. (1) generally results in multiple optimal solutions termed 
as Pareto-optimal solutions. The objective function values 
at these Pareto-optimal solutions form the Pareto frontier. 
A large number of MOGAs can be used to obtain the Pareto 
frontier for global optimization. Particularly, a modified 
non-dominated sorting in genetic algorithms (NSGA-II) 
proposed by Deb et al. [47] is used in this work.

(1)

minimize F(x) =
{
f1(x), f2(x),… , fm(x)

}
subject to gj(x) ≤ 0, j = 1, 2,… , J

xlb ≤ x ≤ xub,

2.2  Multi‑fidelity surrogate model

The motivation of MFS modeling is that many cheaper LF 
sampling points are adopted to reduce the computational 
cost while a limited number of expensive HF sampling 
points are used to ensure the prediction accuracy of the sur-
rogate model. Noted that this motivation is based on the 
assumption that the LF model can provide a general trend of 
the QOI. Three common ways to obtain a LF model are [33, 
46, 48]: (a) simplifying the analysis model (e.g., by using 
a coarse finite element mesh instead of a refined mesh); (b) 
simplifying the modeling concept or domain [e.g., by using a 
two-dimensional (2D) model instead of a three-dimensional 
(3D) one], and (c) simplifying the mathematical or physical 
description (e.g., by using the Euler non-cohesive equations 
instead of the Navier–Stokes viscous Newton equations). It 
should be noted that the LF and HF models are a relative 
concept. Take an airfoil design, which is an aerodynamic 
component, as an example. For obtaining the aerodynamic 
coefficients, when compared with the 2D computational 
fluid dynamic (CFD) simulation with Euler non-cohesive 
equations, a 3D CFD simulation with Navier–Stokes viscous 
Newton equations could be termed as HF model, whereas it 
would be treated as LF model when the wind tunnel experi-
ments are available.

Generally, the MFS based on the interaction of the HF 
model and the LF model can be expressed as [49],

where x is the design vector, F̂(x, a) denotes the MFS that 
is used to replace the actual HF model, f l(x) represents 
the response of the LF model, F(x) represents the actual 
response of the HF surrogate model, and a is a vector of tun-
ing parameters used for minimizing the discrepancy between 
the LF and HF models. From the above definition, the MFS 
F̂(x, a) tends to approach the high accuracy of the HF model, 
but at a considerably less computational effort.

3  The proposed approach

The goal of the proposed AMFS-MOGA approach is to 
improve the efficiency of the MOGA by adopting a two-
stage adaptive MFS approach. In the warm-up stage, a 
preliminary Pareto front is obtained by the LF model or 
LF surrogate model. In the second stage, a set of individu-
als from the preliminary Pareto front are selected to be 
simulated by the HF model. Then, these HF sample data 
are fused with the LF model or LF surrogate model for 
constructing the MFS model. The preliminary Pareto set is 
re-evaluated as the initial individuals and the MFS model 
is used for the fitness evaluations in the second stage to 

(2)F̂(x, a) ≡ F̂(f l(x), a) ≈ F(x),



626 Engineering with Computers (2021) 37:623–639

1 3

obtain the final Pareto front. During the evolutionary pro-
cess, two model management strategies, individual-based 
updating strategy and generation-based updating strategy, 
are developed to improve the efficiency and convergence 
of the proposed approach further. In the following sub-
sections, we present the core ideas of AMFS-MOGA 
approach as two parts. They are (1) multi-fidelity surrogate 
model approach and (2) model management strategies. The 
flowchart for the proposed method is plotted in Fig. 1.

3.1  Multi‑fidelity surrogate model approach

Commonly used MFS approaches are scaling methods, in 
which the MFS is obtained by tuning the LF model using 
scaling function according to the responses of the HF model 
[37, 50]. In this work, the MFS approach proposed in our 
previous work [51] is adopted, where the LF model or a 
tuned LF surrogate model is taken as a base model and is 

Fig. 1  The flowchart of the 
proposed method
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mapped to the studied HF model using a kriging surro-
gate model. For completeness, a brief review of this MFS 
approach is presented here. A more detailed description can 
be found in Ref. [51]. In the MFS approach, if the rela-
tionships between the input variables and corresponding 
responses could be expressed explicitly in the LF model, the 
model will be directly used without the need of constructing 
a surrogate model. Otherwise, a LF surrogate model needs to 
be built, e.g., using kriging, for MFS. To tune the LF surro-
gate model and make it as close to the HF model as possible, 
an optimization procedure can be taken as,

where L(a0, a1) represents the loss function in the least-
square-error sense and xh

i
 is the ith sample point of the HF 

model. The bounds posed on tuning parameters represent the 
prior knowledge of the global constant bias and multiplica-
tive scaling between LF and HF models, respectively.

Once the LF model or tuned LF surrogate model is obtained, 
the scaling process is implemented as follows. For a given HF 
sample set xh =

{
xh
1
, xh

2
,… , xh

mh

}
 with mh HF sample points 

and the corresponding responses f h =
{
f h
1
, f h
2
,… , f h

mh

}
 , the 

discrepancies C(x) =
{
c(xh

1
), c(xh

2
),… , c(xh

mh
)
}

 between the 
HF and LF model/surrogate model for a HF sample point xh

i
 can 

be calculated as,

where f h(xh
i
) is the actual response of the HF model at xh

i
 , 

f l(xh
i
) is the real response of the LF model for xh

i
 , and f̂ l(xh

i
) 

is the predicted value of the LF surrogate model for xh
i
.

Based on the HF sample set xh =
{
xh
1
, xh

2
,… , xh

mh

}
 and 

co r respond ing  d i sc repancy  o r  sca l ing  da t a 
C(x) =

{
c(xh

1
), c(xh

2
),… , c(xh

mh
)
}

 , the scaling function C(x) 
modeled using the kriging can be expressed as,

(3)
min ∶ L(a0, a1) =

m∑
i=1

[
(a0 + a1 f̂

l(xh
i
) ) − f h(xh

i
)
]2

s.t. l0 ≤ a0 ≤ u0, l1 ≤ a1 ≤ u1,

(4)

{
c(xh

i
) = f h(xh

i
) − f l(xh

i
) (if LF model is used )

c(xh
i
) = f h(xh

i
) − a∗

0
− a∗

1
f̂ l(xh

i
) (if LF surrogate is used)

,

(5)

�
Ĉ(x) = 𝛽h + (rh)

T(Rh)
−1(f h(x) − f l(x) − 𝛽hp)

𝛽h = (pTR−1
h
p)−1pTR−1

h
(f h(x) − f l(x))

(if LF model is used )

⎧⎪⎨⎪⎩

Ĉ(x) = 𝛽h + (rh)
T(Rh)

−1(f h(x) − (a∗
0
+ a∗

1
f̂
l
(x)) − 𝛽hp)

𝛽h = (pTR−1
h
p)−1pTR−1

h
(f h(x) − (a∗

0
+ a∗

1
f̂
l
(x)))

(if LF surrogate is used),

where rh ∈ Rmh and Rh ∈ Rmh denote the correlation vector 
and correlation matrix, respectively, and p is a column vec-
tor of length mh that is filled with ones.

After the LF model or LF surrogate model and the scaling 
function are constructed, the MFS that is used to approximate 
the HF model can be expressed as,

3.2  Model management strategies

Model management strategies have a significant impact on the 
success of the surrogate model-based MOGA methods. The 
core of the model management strategy is to identify which 
sample points should be selected from the current population 
to improve the prediction accuracy of the surrogate model. In 
the proposed AMFS-MOGA, two model management strate-
gies are adopted. One is an individual-based updating strategy 
aiming to take the interpolation uncertainty from MFS model 
into consideration, and the other one is a generation-based 
updating strategy aiming to improve the degrees of the disper-
sion of the populations. In the following subsections, these 
two strategies are described in more details.

3.2.1  Individual‑based updating strategy

The predicted fitness values of the individuals from the MFS 
model have prediction uncertainty, which may mislead the 
evolutionary process. Therefore, an individual-based updating 
strategy is developed to take the interpolation uncertainty of the 
MFS model into consideration. As mentioned, although this work 
focuses on the case that the computational cost of the LF model 
can be ignored compared with the HF model, the LF model or the 
LF surrogate model would be used in the MFS. This will lead to 
two different types of uncertainty quantifications of the interpola-
tion uncertainty from the MFS. On the one hand, when the LF 
model is directly used in the MFS, the interpolation uncertainty 
of the MFS only comes from the scaling function Ĉ(x) . The pre-
dicted variance of the scaling function Ĉ(x) can be calculated as,

(6)

{
f̂ vf(x) = f l(x) + Ĉ(x) (if LF model is used )

f̂ vf(x) = a∗
0
+ a∗

1
f̂
l
(x) + Ĉ(x) (if LF surrogate is used)

.

(7)𝜎2
c
(xo) = �̂�2

c

[
1 − (rc)

T(Rc)
−1rc +

(1 − pT(Rc)
−1rc)

2

pT(Rc)
−1p

]
.
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Therefore, the prediction interval I(xo) for an individual 
xo from the MFS can be modeled as an interval with 95.5% 
confidence level. Then the bounds of the prediction interval 
I95.5%(xo) are two times the standard deviation ( 2�c(xo) ) from 
each side of the mean.

On the other hand, when the LF surrogate model is used, 
the predicted variance of the MFS is quantified by calculat-
ing the sums of the predicted variance of the two surrogate 
models, one for the LF surrogate model f̂

l
(x) and the other 

for the scaling function Ĉ(x) . It can be calculated by

where �2
l
(xo) is predicted variance of LF surrogate model. It 

can be calculated by

Note that as long as the domination status of the indi-
vidual may not change due to the interpolation uncertainty 
of the MFS model, its fitness value can be predicted by the 
MFS model instead of expensive simulation models. How-
ever, if the domination status of the individual may change, 
then its fitness value should be evaluated by simulation mod-
els. In this work, the objective switching criterion [52] that 
relates the minimum of minimum distance (MMD) and the 
prediction interval is extended to MFS scenarios to deter-
mine whether the simulation models or the MFS model 
should be used to evaluate the fitness of individuals. In each 
generation, the MMD, which is used to measure the lower 
bound of the distance between the points in dominated and 
non-dominated set, is calculated. The illustration of the cal-
culation process for MMD is presented in Fig. 2. In Fig. 2, 
the distance between two points, e.g., d(A, a) , is calculated 
by the Euclidean distance.

The different relationships between the MMD and pre-
diction interval can result in two different scenarios of the 
individuals. For simplicity, the illustrations of the types of 
individuals on one-dimensional of the objective space are 
presented in Figs. 3 and 4, respectively.

(8)�2
mfs

(xo) = (a∗
1
)2�2

l
(xo)+�

2
c
(xo),

(9)𝜎2
l
(xo) = �̂�2

l

[
1 − (rl)

T(Rl)
−1rl +

(1 − pT(Rl)
−1rl)

2

pT(Rl)
−1p

]
.

As can be seen in Figs. 3a and 4a, no matter how the indi-
viduals “A” and “a”, move within the corresponding predic-
tion interval I95.5%(A) and I95.5%(a) , the individual “a” always 
dominated by the individual “A”. It means that for these sce-
narios although the MFS model has interpolation uncertainty 
at individuals, “A” and “a”, these interpolation uncertainties 
do not affect the domination status of these two individuals at 
the given confidence probability. Therefore, it is no need to 
add these individuals as new sample points for updating the 
MFS model in the subsequent evolutionary process. On the 
contrary, as seen in Figs. 3b and 4b, the probability interval 
of the non-dominated individual “A” overlaps with that of the 
dominated individual “a”. It means that the domination status 
of the individual “A” would be changed because of the interpo-
lation uncertainty from the MFS model. Then these two indi-
viduals, “A” and “a”, should be sent to HF analysis to avoid the 
misleading of the searching. In summary, the individuals that 
satisfy the following condition will be sent for HF analysis,

where

(10)
1

2
I95.5%(A) +

1

2
I95.5%(a) ≥ MMD(f1),

Fig. 2  The illustration of the calculation process for MMD

(11)
⎧⎪⎨⎪⎩

1

2
I95.5%(A) = 2�c(A);

1

2
I95.5%(a) = 2�c(a) (if LF model is used )

1

2
I95.5%(A) = 2�mfs(A);

1

2
I95.5%(a) = 2�mfs(a) (if LF surrogate is used )

.
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Figure 5 depicts the schematic of this developed individual-
based updating strategy. Notice that the MFS will be updated 
after each generation by adding the individuals according to 
the developed individual-based updating strategy. Table 1 pro-
vides the algorithm of the developed individual-based updat-
ing strategy. 

3.2.2  Generation‑based updating strategy

The uniformity of the Pareto set maybe not good if the solu-
tion is updated only according to the above individual-based 
updating strategy. To improve the diversity of the Pareto set, a 
generation-based updating strategy is developed, in which the 
point with the maximum degree of diversity is selected for HF 
analysis after a fixed number of generations. These points can 
be obtained by solving the following equation

where d(x, x0
m
) is defined to be the Euclidean distance 

between x and the mth training point in the current HF sam-
pling set XPm

.
Figure 6 depicts a schematic of the developed genera-

tion-based updating strategy. The algorithm for selecting 
such individuals is listed in Table 2. 

(12)
Find ∶ x

Max = min
1≤m≤l

(d(x, x0
m
)) x0

m
∈ XPm

,

Fig. 3  Two scenarios for the 
individuals when the LF model 
is used

Fig. 4  Two scenarios for the 
individuals when LF surrogate 
model is used

Pareto front
Dominated solutions

HF analysis Update MFS HF analysis

Gneration 1

Pareto front
Dominated solutions

HF analysis

Gneration 2

Pareto front
Dominated solutions

Gneration N

HF analysis

HF analysis

HF analysis

Fig. 5  The schematic plot of the individual-based updating strategy
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Table 1  The algorithm of individual-based updating strategy

Algorithm 1. Individual-based updating strategy.
Input: The individuals in the current generation.

1 Begin

2 non-dominated dominated{ , , ...}  , { , , ...}A B a bx x x x Obtain the non-dominated and dominated points 

3
2

min{ ( ) ( ) }

, , ...
, , ...

A B

a b

MMD f p f q
p x x
q x x

= −

=
=

Calculate the MMD between non-dominated and 
dominated points.

4 ( )mMMD f
Obtain ( )mMMD f by objecting MMD alone the 

objective function axis

5 ( ), ( ),... , ( ), ( ),...P A P B P a P bI x I x I x I x Calculate the prediction intervals of the points

6 1 2( ) ( ) ... ( ) 0P P P nI x I x I x≥ ≥ ≥ ≥
Sort the individuals based on prediction interval

values in descending order.

7 For 1i = to n do

8 if
11( ) ( ) 2P i P i fI x I x MMD++ >

9 HF( )ix ix is sent for HF analysis.

10 else

11 break for

12 end if

13 end for
Output: 1 2{ , , ... , }ix x x

Fig. 6  The schematic plot of 
the generation-based updating 
strategy Pareto front

Dominated solutions

Generation 

Pareto front
Dominated solutions

HF analysis

Generation  

Pareto front
Dominated solutions

Generation  

HF analysisUpdate MFS 

Pareto front
Dominated solutions

Generation  1 k-1

kk+1
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3.3  Steps for the proposed AMFS‑MOGA approach

As a supplement to the flowchart of the proposed approach 
depicted in Fig. 1, detailed steps of the proposed approach 
are presented as follows:

Stage I

Step 1:  Initialize the population of NSGA-II.
Step 2:  Obtain a preliminary Pareto frontier by NSGA-II, 

in which the fitness values for each individual are 
evaluated by the LF model or LF surrogate model.

Stage II

Step 3:  Select a set of individuals that have the same num-
ber of the offset from the preliminary Pareto fron-
tier based on crowding distance in the objective 
space. Then, these individuals are sent to the HF 
model for analysis.

Step 4:  Construct the MFS according to the approach 
described in Sect. 3.1.

Step 5:  Initialize the count number N = 1 , evaluate the fit-
ness values for individual by using the constructed 
MFS and obtain the Pareto front by NSGA-II.

Step 6:  Update the MFS by the two model management 
strategies described in Sect. 3.2. Notice that the 
generation-based updating strategy is implemented 
when the current generation number is equal to 
multiples of the pre-defined generation updating 
number k.

Step 7:  Update the count number N = N + 1.

Step 8:  Check whether the stopping criterion is satisfied. 
If yes, go to Step 9; otherwise, go back to Step 6.

Step 9:  Output the obtained Pareto set.

4  Examples and results

4.1  Numerical examples

In this section, three well-used numerical benchmarks (ZDT1, 
ZDT2, and ZDT3) with different degrees of complexity are 
used to illustrate the applicability and efficiency of the pro-
posed AMFS-MOGA approach. In these three numerical 
examples, the original mathematical functions [53], described 
in Eqs. (7)–(9), are taken as the HF models. The LF models 
are assumed to be the Taylor expansion of the HF models. To 
test the applicability of the proposed approach for different 
situations, it is assumed that a LF surrogate model needs to 
be constructed in the ZDT3, while for ZDT1 and ZDT2, the 
LF models can be directly used for the MFS without fitting a 
surrogate model to replace them. The settings in the NSGA-II 
for these benchmarks are given in Table 3.

Table 2  The algorithm of generation-based updating strategy

Algorithm 2. Generation-based updating strategy.
Input: The existing HF evaluated point set 

1 2
={ , , ... , }

lP P Px x xPX , the current generation number 
i , the pre-defined density and the max-number of generation-based updating generations
update.

1 Begin
2 if /10 0i == & i update≤ do

3 for 1j = to density

4 0 0

1
min ( ( , ))

mm m Pm l
Max d x x x X

≤ ≤
= ∈ Obtain the thj point.

5 1 2
={ , , ... , , }

lP P P jx x x xPX Add the thj point to the HF sampling set.

6 1l l= + Update the number of points in PX

7 end for
8 end if
Output: 1 2{ , , ... , }densityx x x

Table 3  The settings of NSGA-II in the numerical benchmarks

Parameter ZTD1 ZTD2 ZTD3

Population size 100 100 100
No. generations 200 200 200
Offset 30 30 30
Update 100 100 100
Density 5 5 10
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ZDT1

ZDT2

ZDT3

4.2  Quality metrics

To compare the ability of obtaining desirable Pareto fron-
tiers and the efficiency of different approaches, two metrics 
for measuring the quality of Pareto frontiers [54, 55], i.e., the 
relative hyperarea difference (RHD) and overall spread (OS), 
and the HF function calls (FC) for measuring the efficiency 

(13)

minimize f1(x) = x1

f2(x) = g(x) × h(x)

where g(x) = 1 +
9

n − 1

n�
i=2

xi

h(x) = 1 −
√
f1(x)∕g(x)

n = 3

0 ≤ xi ≤ 1, i = 1,… , n.

(14)

minimize f1(x) = x1

f2(x) = g(x) × h(x)

where g(x) = 1 +
9

n − 1

n∑
i=2

xi

h(x) = 1 − (f1(x)∕g(x))
2

n = 3

0 ≤ xi ≤ 1, i = 1,… , n .

(15)

minimize f1(x) = x1

f2(x) = g(x) × h(x)

where g(x) = 1 +
9

n − 1

n�
i=2

xi

h(x) = 1 −
√
f1(x)∕g(x) − (f1(x)∕g(x)) sin(10�f1)

n = 3

0 ≤ xi ≤ 1, i = 1,… , n.

of different approaches, are calculated. The RHD and OS 
represent the convergence and diversity of the obtained 
Pareto frontier, respectively. The smaller the value of RHD 
is, the higher convergence of the Pareto frontier would be, 
while a larger value of OS indicates a more diverse Pareto 
frontier.

Figure 7 illustrates these two metrics geometrically for 
a 2D case. Let the current Pareto set to be P = {a, b, c, d} . 
pgood and pbad are the extreme “good” and “bad” points, 
respectively. The quantity RHD, shown as in Fig. 7a, is 
defined as the relative difference between the area bounded 
by pgood and pbad , and the shaded area covered from pbad to 
the current robust Pareto set P . The quantity OS, shown as 
in Fig. 7b, is defined as the ratio between the area bounded 
by two extreme points a and d in the current robust Pareto 
set P and the area bounded by pgood and pbad.

4.3  Results and comparisons

For comparison, four other methods are considered: (1) 
MOGA with LF model (2) MOGA with HF model (3) krig-
ing surrogate model-assisted MOGA (K-MOGA) proposed 
by Li et al. [52], and (4) Multiplication-scale multi-fidelity 
surrogate model-assisted MOGA (MMFS-MOGA) proposed 
by Zhu et al. [56]. For each approach, 15 runs are conducted 
for all examples to account for the influence of randomness. 
Figure 8 demonstrates the typical Pareto frontiers obtained 
from one of the 15 runs of these approaches.

As illustrated in Fig. 8, the Pareto frontiers from the three 
surrogate model-assisted MOGA, i.e., K-MOGA, MMFS-
MOGA, and AMFS-MOGA, are consistent with that of the 
MOGA with HF model, while only a small portion of the 
Pareto frontier of MOGA with LF model overlap with those 
from the MOGA with HF model. This indicates that it is dif-
ficult to obtain the true Pareto frontier by only incorporating 
the LF model into the MOGA. It is worth to mention that 
compared with K-MOGA and MMFS-MOGA, the proposed 
AMFS-MOGA does not lose the boundary points that on the 
Pareto frontier of the MOGA with HF model. This is attrib-
uted to the developed generation-based updating strategy in 
the AMFS-MOGA, which is very helpful for improving the 
degree of dispersion of the populations.

To further demonstrate the superiority of the proposed 
approach, the quality of convergence, diversity of Pareto 
optimum, and the computational efforts for the MOGA 
with HF model are summarized in Table 4. The compari-
son results of the proposed AMFS-MOGA, K-MOGA and 
MMFS-MOGA are summarized in Table 5. In Table 5, “FC” 
denotes the required HF function calls. Notice that one func-
tion call in Tables 4 and 5 refer to the calculation of objec-
tive and constraints together for a single individual.

As illustrated in Tables 4 and 5, the average values of 
RHD and OS from the K-MOGA, MMFS-MOGA, and Fig. 7  Quality metrics a RHD and b OS [46]
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AMFS-MOGA are close to those of the MOGA with HF 
model in all numerical examples. This means that these 
three surrogate model-assisted MOGA approaches can 
obtain a comparable convergence and diversity of Pareto 

sets compared with the MOGA with HF model. Another 
observation is that considering the standard deviation (STD) 
values in RHD and OS, K-MOGA and MMFS-MOGA per-
form worse than the proposed AMFS-MOGA approach.

Regarding the computational efficiency of these four 
approaches, the number of function calls for AMFS-MOGA 
is nearly 100 times less than that of the MOGA with HF 
model. Meanwhile, the average number of function calls 
is reduced by 45–60% using the AMFS-MOGA compared 
to that of the K-MOGA. Compared to MMFS-MOGA, the 
average number of function calls is reduced by 30% for 
ZDT1 and ZDT2. Figure 9 demonstrates the HF function 
calls for ZDT2 in all the 15 runs for each approach. As 
illustrated in Fig. 9, the proposed AMFS-MOGA run with 
the number of HF calls (the maximum of 160) requires 100 
times fewer than that of the MOGA with HF model run 
(the minimum of 1.9 × 104 ). All individuals will be evalu-
ated by the HF model for obtaining their fitness values in 
the MOGA with HF model, whereas only a small portion 
of them are needed to be analyzed using the HF model in 

Fig. 8  The obtained Pareto frontiers for numerical cases using different approaches

Table 4  Quantity metrics of the NSGA-II with HF model for numeri-
cal cases

Cases Metrics NSGA-II with HF model

15 runs Mean STD

ZDT1 RHD [0.2686 0.2693] 0.269 1.72E–04
OS [0.5102 0.5102] 0.5102 1.15E–16
FC [19,047 19,146] 19,092 27.431

ZDT2 RHD [0.4388 0.4394] 0.439 1.41E–04
OS [0.5102 0.5102] 0.5102 1.15E–16
FC [19,032 19,141] 19,092 32.4345

ZDT3 RHD [0.1362 0.1371] 0.1364 2.09E–04
OS [0.7693 0.7707] 0.7706 3.61E–04
FC [19,015 19,151] 19,105 33.6695
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AMFS-MOGA. It is worth to mention that although there 
is no need for the K-MOGA and MMFS-MOGA to analyze 
all individuals by HF model in the evolution process, it 
still requires a larger number of function calls than that 

Table 5  Comparison of different approaches for numerical cases

Cases Metrics K-MOGA MMFS-MOGA AMFS-MOGA

15 runs Mean STD 15 runs Mean STD 15 runs Mean STD

ZDT1 RHD [0.2263 0.3645] 0.2708 0.0311 [0.2022 0.2671] 0.2507 0.0187 [0.2490 0.2703] 0.2594 0.006
OS [0.2416 0.8533] 0.5498 0.1593 [0.2134 0.6025] 0.4117 0.1108 [0.3046 0.5049] 0.4797 0.0497
FC [109 470] 343.33 90.87 190 190 0 [88 248] 135 51.3471

ZDT2 RHD [0.4356 0.5083] 0.4471 0.0176 [0.4387 0.4392] 0.4390 0.0002 [0.4384 0.4393] 0.439 2.48E–04
OS [0.2220 0.5307] 0.4668 0.0725 [0.5102 0.5102] 0.5102 0 [0.5068 0.5012] 0.5098 8.77E–04
FC [185 406] 279.2 76.2104 190 190 0 [103 166] 131.8 17.5467

ZDT3 RHD [0.1250 0.1889] 0.1423 0.0174 [0.1084 0.1318] 0.1263 0.0064 [0.1015 0.1307] 0.1308 0.0088
OS [0.4771 0.8566] 0.7729 0.0879 [0.1329 0.5614] 0.1886 0.1039 [0.7199 0.8987] 0.7828 0.0414
FC [248 745] 466 143.35 222 222 0 [130 367] 221.26 64.659

Fig. 9  No. of HF function evaluations versus run number for ZDT2

Fig. 10  No. of HF function evaluations in the early evolution process 
for ZDT2

Fig. 11  The structural profile of the stiffened cylindrical shell with 
variable ribs
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of AMFS-MOGA. This is because the proposed AMFS-
MOGA can not only make full use of the uncertainty infor-
mation from MFS but also the data from both LF and HF 
models for updating MFS.

Figure 10 depicts the number of function calls for the 
HF model in the first fifteen generations at one of the 15 
runs for different approaches. As can be seen in Fig. 10, 
K-MOGA requires evaluating more individuals with HF 
model than the proposed AMFS-MOGA to reduce the 
prediction uncertainty of the surrogate model in the early 
stage of the evolution process. MMFS-MOGA needs to 
evaluate more individuals in the later generations. As 
a result, the total number of function calls for the HF 
model in the proposed AMFS-MOGA is less than those 
of K-MOGA and MMFS-MOGA. Noted that although we 
detail the merits of computational efficiency for AMFS-
MOGA in ZDT2, similar results can also be obtained in 
ZDT1 and ZDT3.

4.4  Engineering case

In this section, the developed approach is applied to the 
design optimization for a stiffened cylindrical shell with var-
iable ribs. The structural profile of the stiffened cylindrical 
shell with variable ribs is shown in Fig. 11. Figure 12 depicts 
the schematic of the big ribs and small ribs of the cylindrical 
shell. The object of this problem is to minimize the weight 
and improve the stability of the stiffened cylindrical under 
the constraints of relevant regulations. The design variables 
are the space of ring-ribs l, the sizes of large and small ribs’ 
webs and face panels. Other parameters are fixed during the 
optimization process. The ranges and values for these design 
variables and parameters are depicted in Table 6. The mate-
rial property is listed in Table 7.

Therefore, the optimization problem can be defined as,

where M is the total weight of the stiffened cylindrical shell, 
�1 is mid-plane circumferential stress of the shell, �2 donates 
the longitudinal stress of the outer-face of the shell at rib, �3 
is the rib stress, Pcr1 represents the local buckling pressure, 
Pcr2 represents the global buckling pressure. Intuitively, as 
the mass increases, the load required to destabilize the struc-
ture increases.

In this work, two-levels of fidelity models, the LF empirical 
model and HF simulation model, are used to obtain the objec-
tive and constraint values.

In the LF empirical model, the �1 , �2 , �3 , Pcr1 and Pcr2 can 
be computed by the following formulas

(16)

Minimize [M,−pcr2]

Subject to g1 =
�1

0.85�S
− 1 ≤ 0, g2 =

�2

1.15�S
− 1 ≤ 0,

g3 =
�3

0.60�S
− 1 ≤ 0, g4 = 1 −

pcr1

pj
≤ 0,

g5 = 1 −
pcr2

1.2pj
≤ 0, g6 =

h1

23t2
− 1 ≤ 0,

g7 =
b1

6t1
− 1 ≤ 0, g8 =

h2

23t4
− 1 ≤ 0

g9 =
b2

6t3
− 1 ≤ 0,

t

t 1

b1

h2

t3

l

b2

h 1

t2

t4

Fig. 12  The schematic plot of the stiffened cylindrical shell

Table 6  Ranges and values of the design variables and parameters

Design variables Ranges Values

The thickness of the outer shell t 18–28 mm –
Large ribs
 The thickness of the webs t2 12–22 mm –
 The height of the webs h1 250–300 mm –
 The thickness of the face panels t1 14–26 mm –
 The width of the face panels b1 80–120 mm –

Small ribs
 The thickness of the webs t4 20–30 mm –
 The height of the webs h2 450–500 mm –
 The thickness of the face panels t3 22–35 mm –
 The width of the face panels b2 130–170 mm –

Distance between T-ribs l – 500 mm
The length of the shell L – 12,000 mm
The radius of the shell R – 3500 mm
The hydrostatic pressure Pj – 3 MPa

Table 7  Material properties

Design variables Values

Elastic modulus E 2.1 × 105 MPa

Density � 7850 kg
/
m3

Yield limit �s 550 MPa

Poisson’s ratio � 0.3
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(17)�1 =
k1pjR

t
,

(18)�2 =
k2pjR

t
,

(19)�3 =
k3pjR

t
,

(20)

PE1 = E
(
t

R

)2
[

0.6

(u − 0.37)

]
u ≥ 1

PE1 = 1.21E
(
t

R

)2

u ≤ 1

Pcr1 = k4PE1,

where k1, k2, k3, k4, k5, u, n, � are the coefficients determined 
by the guide from the China Classification Society (CCS), I 
is the moment of inertia of the rib.

(21)
PE2 =

E

n2 − 1 + 0.5�2

[
t

R

�4

(�2 + n2)2
+

I(n2 − 1)2

R3l

]

Pcr2 = k5PE2,

Fig. 13  The FEA model and one simulation result of the UUV

Fig. 14  The typical Pareto frontiers from different approaches for the engineering case

Table 8  Comparison of MMFS-MOGA and AMFS-MOGA for the 
engineering case

Metrics MMFS-MOGA AMFS-MOGA

RHD 0.1300 0.1231
OS 0.0431 0.0529
FC 90 80
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The finite element analysis (FEA) model is taken as the 
HF model. It is solved using the ANSYS 18.0 simulation 
tool. The boundary conditions are listed as: (1) all transla-
tion degrees in the right end are fixed; (2) all the transla-
tion degrees except the axis degree are fixed in the left end. 
Meanwhile, the load applying to the outer shell of this struc-
ture is equal to 3 MPa, which is used to simulate the pressure 
under 300 meters’ water depth. Beam 188 elements are used 
to simulate the face panels of the ribs, and Shell 181 ele-
ments are used to simulate the shell and the webs of the ribs. 
The number of the element is more than 30,000 to ensure 
the simulation results with a desirable accuracy level. The 
FEA model and one simulation result are shown in Fig. 13.

Since running the HF FEA model is computationally 
expensive, the proposed AMFS-MOGA approach is used to 
solve this optimization problem. The setting of NSGA-II in 
this example is the same as that in ZDT1. The two quality 
metrics RHD and OS are also used to make comparisons 
for the Pareto frontiers obtained from different approaches. 
The pgood = [1 × 104,−30] and pbad = [2 × 105,−3] are set in 
the objective function space. Figure 14 depicts the obtained 
typical Pareto frontiers from four approaches. The X repre-
sents the mass and Y represents the global buckling pressure, 
which are shown in Eq. (16). As observed from Fig. 14, the 
Pareto frontier from MOGA with LF model is dominated by 
those from the proposed AMFS-MOGA and MMFS-MOGA. 
This is expected because relying only on the LF empirical 
model can result in the unreliable Pareto frontier. It is noted 
that the K-MOGA cannot obtain a desirable Pareto fron-
tier for this engineering case. A possible reason is that the 
relationships between the design variables and the objective 
and constraints are high non-linear, which leads to a dis-
torted kriging surrogate model for the objective functions 
and constraints under limited HF sample points. Therefore, 
only the comparison results of the quality of convergence, 
diversity of Pareto optimum, and the computational efforts 
for the proposed AMFS-MOGA and MMFS-MOGA are 
summarized in Table 8. Since direct optimization for this 
problem is not possible, evaluating the accuracy of the final 
fronts are implemented by comparing the predicted results 
with the actual simulation results for the obtained Pareto 
solutions. The comparison results illustrate that the average 
relative errors of AMFS-MOGA and MMFS-MOGA for the 
obtained Pareto solutions are less than 6%, while as observed 
from Table 8, the proposed AMFS-MOGA can save 12.5% 
simulation calls over the MMFS-MOGA.

5  Conclusion

In this study, a two-stage adaptive MFS model-assisted 
MOGA is proposed, in which the information from different 
fidelity models are integrated to improve the computational 

efficiency of MOGA. In the first stage, the fitness values of 
the individuals are evaluated by the LF model or the LF sur-
rogate model for obtaining a preliminary Pareto frontier. In 
the second stage, an initial MFS model is constructed based 
on the data both from the LF model and HF sample points 
selected from the preliminary Pareto set. Then, this MFS 
model will be used for the fitness evaluations and adaptively 
updated according to the developed individual-based updat-
ing strategy and generation-based updating strategy. Numer-
ical and engineering cases with different levels of complexi-
ties are tested to demonstrate the applicability and efficiency 
of the proposed AMFS-MOGA approach. The observations 
are summarized as follows: (1) only relying on a simplified 
HF model (i.e., LF model) may result in unreliable Pareto 
frontier, while using a single-fidelity HF model/surrogate 
model in MOGA is time-consuming or even computationally 
prohibitive, and (2) the proposed AMFS-MOGA approach 
can significantly reduce the number of evaluations of the 
expensive HF model, and at the same time obtain compara-
ble convergence and diversity of the Pareto frontier as those 
obtained by the MOGA with HF model.

As part of future work, the proposed AMFS-MOGA 
approach will be further tested on more engineering design 
problems with higher dimensions. Also, practical engineer-
ing design problems always involve uncertainties, extend-
ing the AMFS-MOGA approach for addressing the robust 
optimization problem will also be beneficial to broaden the 
applicability of the approach.
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