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A B S T R A C T   

Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault 
diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. 
Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources 
for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a 
challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge 
computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the 
Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise 
interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure 
transforms from multiple branches at training time to a single branch at inference time. This improves the 
inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the 
diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public 
dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing plat
form. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic ac
curacy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, 
respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the 
inference speed is increased by 38.83%.   

1. Introduction 

The gearbox is a vital component in industrial systems as it plays an 
indispensable and critical role in power transmission. Its high load 
capability and efficiency make it an extensively used component in 
various sectors, including energy and transportation. However, the high 
intensity of usage makes it easy to fault. Fault diagnosis can determine 
the type, severity, and location of the fault in time. Which can help 
identify the root cause and target repair work before a catastrophic 
failure occurs. To assure the reliability and stability of industrial sys
tems, it is necessary to research the fault diagnosis of gearboxes (Kumar, 
et al., 2020; Kumar et al., 2022; Kumar et al., 2021; Lei et al., 2014; Shao 
et al., 2021). 

Gearboxes often operate in harsh environments with multiple types 
of noise interference, which creates many difficulties for fault diagnosis. 
Therefore, ensuring the effectiveness of fault diagnosis methods in harsh 
environments is a key issue in gearbox health condition monitoring 

research (Chen, et al., 2016; Huo et al., 2022; Tang et al., 2022; Wang 
et al., 2019; Yu et al., 2022). Zhao et al. (Zhao, et al., 2019) proposed the 
deep residual shrinkage network. The network uses soft thresholding as 
a nonlinear transformation layer, which can eliminate features that are 
not important for the diagnosis process and improves the feature 
learning capability for high noise vibration signals. By experimenting 
with various types of noise, high fault diagnosis accuracy is achieved. 
Zhang et al. (Zhang, et al., 2020) proposed a fault diagnosis methodol
ogy based on signal processing where the model takes the raw time 
signal directly as input without any noise reduction pre-processing. In 
addition, the acquired signals containing noise often have strong 
nonlinear characteristics, which can lead to relatively low diagnostic 
accuracy when directly applied to the original input. Therefore, Wang 
et al. (Wang, et al., 2022) proposed an approach to fault diagnosis based 
on time-frequency representation with DRL. By converting the vibration 
signal into TF maps of uniform size, a diagnostic agent is established 
under the DRL framework, and the methodology is experimentally 
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verified to have good generalization and stability. 
The above fault diagnosis methods can achieve good results. How

ever, most of the existing studies focus on improving the accuracy of 
fault diagnosis and ignore resource efficiency. Their success relies 
mainly on increasing the number of network layers or adding certain 
network structures to improve the feature extraction capability of the 
model, which usually increases the model parameters and hardware 
overhead (Li, et al., 2022; McDonald et al., 2012; Wu et al., 2021). In 
engineering applications, industrial system health monitoring is often 
performed using cloud computing (Hewa, et al., 2022). The method 
collects the operational data of gearboxes and uploads them to the server 
on the cloud computing side through the network. Based on the suffi
cient computing and storage resources on the cloud computing side, the 
algorithm model is iteratively optimized and the inference of the 
gearbox health status is realized in the cloud. Typically, gearboxes 
operate in harsh environments, thus cloud computing (which requires 
multiple levels of data transfer) often faces data loss and time delays. 
Therefore, the use of cloud computing can affect the accuracy and 
real-time fault diagnosis (Shi, et al., 2016). 

In the next-generation application paradigm of artificial intelligence, 
edge computing is emerging as a key enabling technology that is 
attracting widespread academic attention. As a new computing para
digm, it moves the computing of applications, data, and services from 
the central node of the network (cloud servers, etc.) to the edge nodes of 
the network (edge gateways, intelligent cards, etc.). Edge computing 
disaggregates the large services processed by the cloud into smaller and 
more manageable parts, which are distributed to the edge for process
ing. It can reduce the response time of the system, reduce the load on the 
transport network, and reduce the memory and computing overhead of 
cloud computing (Chiang and Zhang, 2016; Gill et al., 2022; Kong et al., 
2022; Samie et al., 2019). Shi et al. (Shi, et al., 2016) propose a defi
nition of edge computing, conduct research for several application cases, 
and present several challenges and opportunities in the field of edge 
computing. Compared with cloud servers, edge devices provide 
extremely limited resources such as computation and storage, and it is a 
challenging problem for edge computing to fully utilize the resources of 
edge devices to satisfy the most complex services possible (Zeng, et al., 
2022). Gao et al. (Gao, et al., 2020) proposed a lightweight EdgeDRNN, 
which uses incremental network algorithms to exploit temporal sparsity 
in RNNs and can run on the cheapest FPGAs, reducing DRAM-weighted 
memory accesses by a factor of 10. Zhao et al. (Zhao, et al., 2020) 
proposed an INES technique using deep learning to reduce the compu
tational cost by building lightweight deep neural networks through 
deeply separable convolution. The methodology can be deployed based 
on an edge cloud collaboration architecture, reducing the bandwidth 
load and achieving high test accuracy in the field at a tenth of the 
operating cost of a centralized server. In the area of industrial health 
monitoring, edge computing offers new methods for processing and 
mining monitoring data. Jing et al. (Jing, et al., 2022) proposed a deep 
learning-based framework for cloud-based collaboration, using the 
collaboration between the cloud and the edge for more accurate RUL 
prediction and significantly reduced model training time. Zhang et al. 
(Zhang, et al., 2021) build a fault diagnosis model for the train, using a 
stacked autoencoder deep neural network, which is then deployed at the 
edge with a migration learning strategy to achieve fast fault localization. 
However, related studies mainly focus on developing algorithmic 
models with the concept of edge computing for the research object to 
improve the effectiveness of the model in relevant aspects (Errandonea, 
et al., 2023; Huong et al., 2021; Khalil et al., 2021; Liang et al., 2022; 
Yao et al., 2020; Zhang et al., 2023). Due to the high number of pa
rameters and hardware overhead of traditional fault diagnosis models, 
the computational resources of edge devices are limited and limited in 
deployment and application. Therefore, it is important to develop a 
lightweight gearbox fault diagnosis-based approach. 

To address the above problems, this article introduces a gearbox fault 
diagnosis methodology using a lightweight convolutional neural 

network with edge computing. The following are the main contributions 
of this paper:  

A. A fault diagnosis process is designed based on the concept of edge 
computing. The optimal weights with high diagnostic accuracy are 
trained and distributed based on the hardware resources on the cloud 
computing side. The inference is performed at the edge computing 
side to ensure the timeliness of the diagnosis.  

B. To prevent the noise in the monitoring signal from interfering with 
the diagnostic accuracy, noise interfering with monitoring data is 
suppressed by extracting the MFCC feature matrix, and the fault 
features can be enhanced at the same time.  

C. Based on the principle of structural re-parameterization, the model is 
transformed from multi-branching during training to single- 
branching during inference. Which can improve the inference 
speed and reduce the hardware overhead of computing devices while 
ensuring the fault diagnosis capability.  

D. By comparing and analyzing the test results on two experimental 
devices and the relevant parameters of the model. It is demonstrated 
that the proposed method in this paper has better network extraction 
capability, smaller memory footprint, and faster speed. 

The rest of the paper is structured as follows. Section 2 presents the 
background of the technique from related work. The details of the 
proposed method are presented in Section 3. Experiments and evalua
tion are demonstrated in Section 4. Finally, Section 5 presents the con
clusions and future work. 

2. Related works 

The related works are briefly reviewed in this section, including 
work on edge computing, lightweight neural network, and Mel- 
frequency cepstral coefficients feature. 

2.1. Edge computing-based fault diagnosis 

Edge computing is closer to the monitored device, allowing for faster 
processing and fewer delays. Applying this distributed architecture to 
the fault diagnosis of the device, data analysis, and diagnosis results 
generation are closer to the target device. Therefore, helps the device to 
make immediate feedback to the diagnosis results. And it can filter most 
of the rubbish data during device operation, effectively reducing the 
cloud loading. Making large-scale device connectivity and large-scale 
data processing possible in monitoring industrial device health. Qian 
et al. (Qian, et al., 2019) propose a method for real-time fault diagnosis 
and dynamic control of rotating machinery based on edge computing. 
Sensor signals are collected in parallel by a designed edge computing 
node. Then, feature extraction and fault diagnosis are performed. The 
motor can be controlled when an emergency fault is diagnosed. Ren 
et al. (Ren, et al., 2022) propose a cloud-edge collaborative adaptation 
approach for fault diagnosis for scene-specific equipment in cloud 
manufacturing systems. The variety of diagnosable faults is extended by 
a sampling space expansion method. Wang et al. (Qizhao, et al., 2021) 
propose an efficient asynchronous federated learning method. This 
method allows edge nodes to select part of the model from the cloud for 
asynchronous updates based on local data distribution, thereby reducing 
computation and communication. This method can reduce resource re
quirements at the edge, reduce communication, and improve training 
speed in heterogeneous edge environments. Therefore, the benefits of 
edge computing are as follows:  

A. Low delay: computing power is deployed close to the device, and 
device requests are responded to in real-time. 

B. Operating at low bandwidth: Moving work closer to users or equip
ment, can reduce the impact of bandwidth limitation. 
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C. Privacy protection: Data is collected locally, analyzed locally, and 
processed locally, reducing the exposure of data to public networks 
and protecting data privacy effectively. 

Edge computing offers a wealth of benefits. However, its adoption 
comes with several significant challenges. Notably, one of the key 
challenges is the inherent limitation of computing capacity at edge 
nodes. Often constrained by size, power, and resource availability, these 
devices can struggle to handle resource-intensive computing tasks. 

2.2. Lightweight neural network 

In edge computing scenarios, there are usually abundant software 
and hardware resources available in the cloud for model training, but 
limited resources in the edge for model inference. Therefore, we aim to 
have a more complex model structure for training to achieve higher 
accuracy and a smaller model structure for inference that preserves the 
same level of accuracy. Dai et al. (Dai, et al., 2021) propose an improved 
knowledge distillation method, which enables the transfer of the com
plex mapping functions learned by cumbersome models to relatively 
simpler models. The method can be effectively applied to intelligent 
edge computing. Fang et al. (Yu, et al., 2021) propose a novel global 
pruning method. Formulating the pruning problem as a performance 
improvement sub-problem and a global pruning sub-problem by intro
ducing an alternating direction method of multipliers. The method can 
compress and accelerate the DNNs for efficient edge computing. Huang 
et al. (Huang, et al., 2023) propose an integrated cloud-edge-device 
framework that connects the edge, the remote cloud, with the device 
through cross-platform web technology for adaptive deep learning ser
vices, achieving lower latency, lower mobile power, and higher system 
throughput. However, whether pruning or knowledge distillation, it 
requires secondary training and has some difficulty in training. 

Since a set of training parameters of a neural network corresponds to 
a network structure, a set of parameters of one network structure can be 
transformed into another set of parameters, and the transformed pa
rameters can be used for the other structure. The two network structures 
are equivalent as the conversion of the parameters is equal, which is 
called structural re-parameterization (Ding et al., 2019; Ding et al., 
2021a,b). Structural re-parameterization is implemented by first con
structing a network structure for training and a network structure for 
inference, then converting the parameters from training equivalently to 
another set of parameters for inference. 

2.3. Mel-Frequency Cepstral Coefficients feature 

MFCC can simulate the nonlinear characteristics of the human ear 
with a Mel filter bank and is usually used to extract signal features in 
sound signal processing. The core idea of MFCC is based on the fact that 
human has different auditory sensitivities to the incoming sound of 
different frequencies, i.e., the lower frequency with the higher resolu
tion. MFCC feature coefficients describe the spectral envelop charac
teristics of the sound signal and can suppress interference band 
information, which has a high recognition rate in practical applications 
(Li, et al., 2022; Yan et al., 2022). The extraction steps of the MFCC 
feature are shown in Fig. 1. The following will be introduced separately: 

Step 1: Framing & windowing. Because MFCC is usually used in 
automatic speech, and the audio signal is constantly changing, the 
signal is framed by the window function to obtain a stable frame 

signal. The commonly used window function is the Hann and Ham
ming window, whose expression is: 

H(n)= a0 − (1 − a0)cos
(

2πx
L

)

, (n= 0, 1,…, L − 1) (1)  

where L refers to how many data points are contained in every frame. 
If a0 is set as 0.54 or 0.5, the above expression is named Hamming 
window or Hann window respectively. Here we utilize the Hamming 
window function. 
Step 2: Discrete Fourier transforms (DFT). As a result of the inherent 
limitations in analyzing signal characteristics in the time domain, it 
is customary to convert signals into energy distributions in the fre
quency domain for analysis. The spectrum T(k) of the signal frag
ment H(n) is extracted by applying the discrete Fourier transform to 
the signal fragment H(n) by the formula: 

T(k)=
∑L− 1

n=0
H(n)e−

j2πkn
L , (n= 0, 1, ...,L − 1) (2)   

Step 3: Power spectrum calculations. Since the power spectrum can 
reflect the main signal features, the power spectrum Pt is obtained by 
calculating the modular square: 

Pt= T(n). T̂(n) (3)   

Step 4: Mel triangle filtering. Motivated by human hearing that the 
cochlea is a series of filter banks, which solely focuses on some 
specific frequencies. Some band-pass filters are utilized to separate 
them, i.e., the Mel filter bank. The first filter is very narrow since the 
low-frequency space possesses a lot of information. As the fre
quencies get higher the filters get wider, which is consistent with the 
human ear. To offset this feature, the Mel scale is utilized to convert 
frequency f, which is written as: 

fmel = 2595 lg(1+ f / 700) (4)  

The Mel scale describes the nonlinear characteristics of human 
auditory frequency perception and tells us exactly how to space the 
filter banks and how wide to make them. Next, the information in 
each frequency band is filtered using T triangular filters, and the 
process is as follows: 

Ht(n)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
2 × (n − f (t − 1))

(f (t + 1) − f (t − 1)) × (f (t) − f (t − 1))
,

(2 × f (t + 1) − n)
(f (t + 1) − f (t − 1)) × (f (t + 1) − f (t))

,

0,

n < f (t − 1)
f (t − 1) ≤ n ≤ f (t)
f (t) ≤ n ≤ f (t + 1)
n ≥ f (t + 1)

(5)  

where t = 1,2,3,⋯ 24. which means 24 independent T triangular 
filters, f(t) is the tth central frequency, n = 0,1, ... , L/2 – 1 is the Mel 
scale in each filter. Here, we have: 

∑T − 1

t=0
Ht(n)= 1 (6)   

Step 5: The logarithmic spectrum S(t). To make the data processing 
results more robust to noise, the output power spectrum is taken as a 
logarithmic operation to obtain the logarithmic spectrum S(t) for 
each filter in Step 4, and the formula is: 

Fig. 1. MFCC feature extraction and MFCC feature matrix construction process.  
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S(t)= ln

(
∑L− 1

n=0
|Pt|2Ht(n)

)

(0≤ t≤T) (7)  

Where: Ht(n) is the tth filter bank, S(t) is the logarithmic spectrum, Pt 
is the dispersive power spectrum obtained in step 3, and T is the 
number of filter banks. The logarithmic operation reflects that the 
human does not hear loudness on a linear scale. 8 times the energy 
needs to be put in if we want to double the sound volume. 
Step 6: Discrete cosine transforms (DCT). Because the filter banks are 
overlapping, the above energies are quite correlated with each other. 
The transformation is used to calculate the spectral components of 
different frequency bands, making the dimensional vectors of each 
band independent of each other, thus obtaining the information of 
each frequency band of the signal by the following formula: 

c(x)=
∑L− 1

t=0
S(t)cos

(
xπ(t − 0.5)

T

)

, 0≤ x ≤ T (8)  

where c(x) is the MFCC feature of the input data sample. S(t) is the tth 

logarithmic spectrum. 

3. Proposed method 

In this section, the main procedure of the fault diagnosis methodol
ogy using edge computing and the methodology of constructing the 
MFCC feature matrix are introduced. The proposed lightweight con
volutional neural network and the implementation principle of structure 
re-parameterization are elaborated on in detail. 

3.1. Edge computing-based fault diagnosis method for gearboxes 

To solve the problems of inconspicuous fault characteristics of 
gearbox monitoring signals and lightweight deployment of models, the 
main flow chart of the proposed edge computing-based gearbox fault 
diagnosis methodology is given in Fig. 2. The method is divided into two 
parts: the cloud computing side, which is far from the gearbox, and the 
edge computing side, which is close to the gearbox. At the cloud 

computing side, the monitoring data from the edge side is firstly labeled, 
the data is divided into the training set and validation set, the signal 
samples are obtained by sliding window sampling, the MFCC feature 
matrix is extracted from the signal samples, the MFCC is imported into 
the SrepCNN-T neural network, and iterative training is performed 
based on the powerful computing performance of cloud computing. 
Finally, the optimal weights of the neural network are sent down to the 
edge side after training. At the edge computing side, firstly, the collected 
real-time monitoring data is sampled by sliding window and the MFCC 
feature matrix of samples is extracted, and then the MFCC feature matrix 
of the sample is imported into the SrepCNN-I neural network, and the 
SrepCNN-I neural network has imported the optimal weights of the 
neural network issued from the cloud computing side, then the accurate 
fault diagnosis results can be obtained quickly at the edge side. It is 
worth mentioning that in engineering applications, the training of 
models can be done periodically on the cloud, depending on the actual 
situation. The updated model weights are sent down to the edge through 
file streams, message queues, etc. In summary, the edge computing- 
based gearbox fault diagnosis methodology consists of two links: 
MFCC matrix acquisition and Srep-CNN for fault diagnosis. 

3.2. MFCC feature matrix construction 

The monitoring signals are full of noise and other useless information 
due to the working conditions and environment, which affects the ac
curacy of the model heavily. The MFCC feature matrix involves MFCC 
feature extraction and MFCC feature matrix construction. 

Since the MFCC features only describe the static spectral envelope 
information of signals, in reality, the fault information of gearboxes is 
mostly hidden in the dynamic information. Firstly, the MFCC features of 
gearbox monitoring data are extracted based on the method introduced 
in 2.1. More fault information is obtained from the MFCC features using 
first-order difference calculation and second-order difference calcula
tion. The calculation process of the first-order difference and the second- 
order difference is as follows. 

c1(x)=
1
̅̅̅̅̅̅̅̅̅̅̅̅
∑i=n

i=− n
i2

√
∑i=n

i=− n
i× c(x+ i) (9)  

c2(x)=
1
̅̅̅̅̅̅̅̅̅̅̅̅
∑i=n

i=− n
i2

√
∑i=n

i=− n
i× c1(x+ i) (10) 

The MFCC feature matrix Mdata constructed in this section is obtained 
by combining the obtained c(x), c1(x) and c2(x), which is performed as: 

Mdata = [c(x)c1(x)c2(x)] (11)  

Where: [•] indicates the first and last concatenation of the different 
inputs. 

3.3. Structural Re-parameterized convolutional neural network 

3.3.1. Network architecture 
To achieve a lightweight deployment of the network, we designed a 

structurally re-parameterized convolutional neural network called 
SrepCNN, and the network structure is shown in Fig. 3. The network 
adopts a modular design, and the number of layers of module A and 
module B can be set according to the actual application scenario. By 
adjusting the depth of it, the feature extraction capability can be 
changed. The network is divided into a train state and an inference state, 
and the network in the two states is called SrepCNN-T and SrepCNN-I, 
respectively. 

SrepCNN-T consists of multiple network stages in series, each 
network module consisting of a 3*3 convolutional branch, a 1*1 

Fig. 2. The procedure of gearbox fault diagnosis method based on 
edge computing. 
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convolutional branch, and an identity branch, followed by a convolu
tional kernel and a batch normalization (BN) layer. and the SrepCNN-I 
consists of multiple 3*3 convolutional modules in series. 

When the model is trained iteratively on the cloud side and is in the 
training session, the SrepCNN-T network is used. Since the identity 
branch can be considered as degenerate 1*1 conv and 1*1 conv can be 
further considered as degenerate 3*3 conv. Therefore, after the model 
training is finished, a simple algebraic transformation is applied to the 
model weights to remove the identity branch and 1*1 conv branch 
through structure re-parameterization, and the new weights are saved 
and deployed to the edge for testing. 

When the model has been deployed on the edge computing platform 
and is in inference session, the SrepCNN-I network is used. The struc
tural re-parameterization method is used to transform the network 
structure, mainly considering the following reasons:  

A. Better network extraction capability: Inspired by Resnet, the 
multi-branch architecture can be seen as a collection of many paths 
of differing lengths, making the model an implicit collection of many 
shallower models. Which can increase the feature extraction faculty 
of the network. Residual networks introduce short paths which can 
carry a gradient throughout the extent of very deep networks. Which 
avoids the vanishing gradient problem, and makes it more conducive 
to training (Belongie, et al., 2016; He et al., 2016).  

B. Smaller memory usage: Considering the limited resources of edge- 
side devices and the increased memory peak due to the feature maps 
of each branch need to be saved until the summation is completed, 
the multi-branch network structure is memory inefficient as shown 
in Fig. 3. Compared with the multi-branch structure of T-network, 
the single-branch structure of I-network can significantly reduce the 
cost of memory.  

C. Faster speed: SrepCNN-I uses only 3*3 conv because it is optimized 
in GPU and CPU by many computing libraries (e.g., Nvidia cuDNN & 
Intel MKL), and the theoretical computing density of 3*3 conv is 
about 4 times higher than other convolutional methods, so using 3*3 
conv can effectively improve the model’s inference speed on edge 
devices (Chetlur, et al., 2014; Lavin and Gray, 2016). 

3.3.2. Implementation of structural re-parameterization 
When the model is iteratively trained to obtain the optimal weights, 

the structural re-parameterization methodology is applied to convert the 
parameters of the SrepCNN-T network structure into another set of pa
rameters coupled with the SrepCNN-I network structure. We can 
equivalently replace the former with the latter, thus achieving a change 
in the network architecture. The conversion process is shown in Fig. 4. 

Fig. 4. (a) depicts the changes in the structure of the model during 
the conversion of the trained SrepCNN-T basic module into a single 3*3 
conv layer in the SrepCNN-I network, and Fig. 4. (b) depicts the 
parameter changes of the neural network. We use M(k) ∈ [C1,C2, k, k] to 
describe a convolutional layer with a convolutional kernel k*k, where C1 
and C2 are the number of input channels and output channels, respec
tively. The computational process for the BN layer is described using the 
following equation: 

BN(XBN , α, β, γ, μ)= XBN − α
̅̅̅̅̅̅̅̅̅̅̅̅̅
β2 + ε

√ ⋅ γ + μ (12)  

Where XBN is the input for the BN layer, α, β, γ, μ indicates the cumulative 
mean, standard deviation, and learned scale factor of the BN layer and 
bias, respectively, and ε is a very small constant that can prevent the 
denominator from being zero. The BN layer in each branch of the basic 
module of the SrepCNN-T network can be further transformed by: 

BN(XBN , α, β, γ, μ)= γ
β

⋅XBN +
(

−
α⋅γ
β

+ μ
)

=M′(k) ∗ XConv + μ(k) (13)  

Where M′(k) refer to the “virtual convolutional layer” of the branch in the 
process of structural reparameterization. This transformation also ap
plies to the identity, since the identity can be considered as a 1*1 
convolution with the unit matrix as the convolution kernel. Then the 
result of a SrepCNN-T basic module can be expressed as: 

W(X)=F(X)+D(X)+ Identity(X)
= BN

(
M′(3) ∗ X, α(3), β(3), γ(3), μ(3))

+BN
(
M′(1) ∗ X, α(1), β(1), γ(1), μ(1))

+BN
(
X, α(0), β(0), γ(0), μ(0))

= M′(3) ∗ X+ μ(3) +M′(1) ∗ X+ μ(1) +X+ μ(0)

= M′ ∗ X+ μ′

(14)  

Where M′ refer to the “virtual convolutional layer” of three-branch after 
reparameterizing. The three additive numbers in the formula represent 
the output of the 3*3 conv branch, 1*1 conv branch, and identity in the 
basic module of SrepCNN-T, respectively. The identity and 1*1 conv 
branches are filled with 0 to be able to transform to the size of 3*3. 
Further, the 1*1 kernel is summed to the centroid of the 3*3 kernel to 
obtain the final 3*3 kernel, and the three deviation vectors are summed 
to get the total deviation, completing the constant transformation of 
integrating the three branches into one 3*3 conv. Thus the SrepCNN-I 
can be used to equivalently replace the SrepCNN-T. 

Fig. 3. Structure of structurally re-parameterized convolutional neural networks.  
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4. Case studies 

4.1. Experimental method 

In this paper, all case studies were conducted on a computer [ 
IntelCore i7-11700K@3.60GHz processor, NVIDIA GeForce RTX 3070 
GPU, 32.0 GB of RAM ], and a Jetson Xavier NX kit [ NVIDIA Carmel 
ARM CPU, NVIDIA Volta GPU with 48 Tensor Cores, 8.0 GB RAM ]. The 
first one is used as the cloud device and the second one as the edge 
device. On the cloud device, the dependency environment of models is 
based on Windows. on the edge device, it is deployed via Docker (an 
open-source application container engine). In addition, models were 
written in Python 3.9 and Pytorch 1.11.0. 

The experimental procedure is shown in Fig. 5. The experimental 
data set is divided into a training data set, a verification data set, and a 
test data set. The training and verification data sets are saved in the 
cloud device. The test data set is saved in the edge device. Models are 
trained on the cloud device to obtain the best weight. The weight is 
downlinked to the edge device via file streams. On the edge device, 
models load the weight and run to get the test results. It is worth noting 
that in the engineering application of the proposed method, the updat
ing and distribution of the best weight can be done periodically. In the 
experiments, since there is no data update in real-time during the 
training process, the downlink of model weight is performed only once. 

The MFCC-SrepCNN-T model is first trained on the cloud device, the 
structure is re-parameterized based on the best weights, and the re- 
parameterized weights are sent down to the edge devices. The MFCC- 

SrepCNN-I model is deployed on edge devices. Given the difficulty of 
the experiments, the network structure used in the two application cases 
in this paper, a and b in Stage-A and Stage-B take values of 4 and 6, 
respectively. The Hyper-parameters of MFCC-SrepCNN in the experi
ment are shown in Table 1. To verify the efficiency of the proposed 
method, the following models are used for comparison experiments:  

A. Resnet: The degradation problem of deep networks is solved by 
residual connectivity, enabling the training of deeper networks (He, 
et al., 2016).  

B. Xception: The network uses residual connectivity to enhance feature 
extraction, and uses depthwise separate convolution to achieve 
complete decoupling of cross-channel correlation and spatial corre
lation (Chollet, 2017).  

C. Deep residual shrinkage networks (DRSN): Soft thresholding in 
the network structure can filter noise-related features, effectively 
improving the ability to identify features from noisy data. It is a 
classical model used in recent years for fault diagnosis in noisy en
vironments (Zhao, et al., 2019).  

D. SrepCNN: The samples are reshaped and fed directly into SrepCNN-T 
for iterative training, and tested using SrepCNN-I. The difference 
between this method and the proposed method is that the MFCC 
matrix is not extracted in this method.  

E. MFCC-SrepCNN-T: The MFCC feature matrix of samples is extracted 
and then input to SrepCNN-T for iterative training, and the test 
session still uses SrepCNN-T. The difference between this method 

Fig. 4. Implementation process of structural re-parameterization.  
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and the proposed method is that this method does not have structural 
re-parameterization.  

F. MFCC-SrepCNN: The proposed method. The MFCC feature matrix of 
samples is extracted and then input to SrepCNN-T for iterative 
training, the model is structurally re-parameterized, and SrepCNN-I 
is used for the testing session. 

Xception, Resnet, and DRSN are the classical and efficient convolu
tional neural networks in recent years. These models are chosen to 
validate the overall performances of the suggested methods in a noisy 
environment. In addition, SrepCNN is chosen as a comparison method to 
verify the gain effect of MFCC on the features extract capability of the 
method in a noisy environment. MFCC-SrepCNN-T is chosen as a com
parison method to verify the effect of structural re-parameterization in 
MFCC-SrepCNN on the diagnostic ability of the method and the accel
eration effect of the method. To verify the advantages of the proposed 
method, two real gearbox datasets are used to compare the performance 
metrics of each model, and model complexity metrics such as Params, 
Flops, Memory, and inference speed of a single sample are calculated for 
each model. 

4.2. Case one 

4.2.1. Experimental data description 
The experimental gearbox data for Case 1 was obtained from the 

drivetrain dynamic simulator (DDS) at Southeast University, China. The 
simulation platform is shown in Fig. 6, the DDS can simulate a variety of 
bearing and gear operating conditions, and the gear operating condition 
data in this dataset were selected for the case study (Shao, et al., 2019). 

The acceleration signals in the x, y, and z directions of the experi
mental platform were collected using acceleration sensors attached to 
the parallel gearbox and planetary gearbox housings. Sampling was 
performed using a sliding window approach with a window overlap of 0. 
The window length was fixed at 3136, taking into account the rotation 
speed of the device and the sampling rate of the sensor. Ensuring that 
each sample contained at least one revolution of the gear. The data are 
subjected to a de-singularization and normalization operation. In this 
paper, the original experimental signal is augmented with multiple noise 
samples by incorporating random Gaussian white noise. The signal-to- 
noise ratio (SNR) is used as a metric to quantify the magnitude of the 
added noise relative to the original experimental signal. The SNR 

Table 1 
The hyper-parameters of MFCC-SrepCNN.  

Number of modules  Layer Name Size  Layer Name Size 

1 MFCC-SrepCNN-T MFCC channels:6, mels:64 MFCC-SrepCNN-I MFCC 6 channels, 64 mels 
1 3*3 Conv channels:48, stride:1 3*3 Conv 48 channels, stride 1 

1*1Conv channels:48, stride:1 
1 3*3 Conv channels:48, stride:2 channels:48, stride:2 3*3 Conv 48 channels, stride 2 

1*1Conv 
4 3*3 Conv channels:96, stride:2 → 1a 3*3 Conv channels:96, stride:2 → 1 

1*1Conv channels:96, stride:2 → 1 
Identity / 

6 3*3 Conv channels:192, stride:2 → 1 3*3 Conv channels:192, stride:2 → 1 
1*1Conv channels:192, stride:2 → 1 
Identity / 

1 3*3 Conv channels:1280, stride:2 3*3 Conv channels:1280, stride:2 
1*1Conv channels:1280, stride:2 

1 Linear out_features:5 Linear out_features:5  

a Stride:2 → 1: The stride of the first module in this stage is 2, the other values are 1. 

Fig. 6. Experimental equipment of DDS.  

Fig. 5. The procedure of experimental.  
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function is expressed as: 

SNR= 10 log10(Es /En)(dB) (15)  

Where Es is the energy of the data and En is the energy of Gaussian white 
noise. In general, SNR = ∞ indicates the case of no added noise. 

To observe the effect of different noise levels on samples, Health and 
Miss states were examined as an example. Five different SNRs were 
applied to the same sample. Fig. 7 shows that without added noise, there 
is a clear distinction in the signal amplitude characteristics between the 
two states. However, as the noise level increases, it becomes increasingly 
challenging to identify the amplitude characteristics of the two states. 

The completed dataset contains 668 samples for each operating state, 
which are randomly disrupted and subsequently partitioned into the 
training, validation, and testing sets using a ratio of 7:1:2. The different 
working states Health, Chipped, Miss, Root, and Surface are also labeled 
with 0–4 respectively. 

4.2.2. Results & discussion 
The samples input to each network are reshaped into a matrix of size 

[6, 56, 56], respectively. The Hyper-parameters of the model training 
during the experiments are shown in Table 2. 

The Batch size is set to 64 considering the convergence and memory. 
Epoch is set to 50 according to the convergence of each model, in the 
pre-experiment. And CrossEntropy, which is the frequent loss function. 
CosineAnnealingLR is used to modify the learning rate (LR) of the 

network during training. The method adjusts the LR by the cosine 
function, which can make the learning take the lead in a slow decline, 
then accelerate the decline, and then slowly decline again. This method 
yields advantageous results in accelerating model convergence and 
enhancing model efficacy. Considering the differences of each model, 
three sets of experiments were set up according to the maximum LR. The 
group with the highest average accuracy was chosen as the final 
experimental result of the model. 

To evaluate the proposed methodology in comparison with other 
classical techniques, three replicate experiments were conducted to re
cord the classification accuracy under normal conditions and different 
noise environments, The experimental outcomes are presented in Fig. 8, 
where the prediction accuracy values of the model represent mean 
values of the three replicate experiments. It can be seen that the accu
racy of MFCC-SrepCNN overlaps with that of MFCC-SrepCNN-T under 
each noise condition, indicating that the structural re-parameterization 
does not change the final test accuracy of the MFCC-SrepCNN model. 
The accuracy fold of MFCC-SrepCNN is above the accuracy fold of 
SrepCNN in each noisy environment, especially the accuracy of MFCC- 
SrepCNN is 43.99% higher than that of SrepCNN at SNR = − 4, indi
cating that MFCC can significantly increase the diagnostic capability of 
the approach in the presence of noise. MFCC-SrepCNN is significantly 
ahead of Resnet, Xception, and DRSN, suggesting that the proposed 
model exhibits good diagnostic capability in noisy environments 
compared with the classical model. In addition, the mean diagnostic 
accuracy of SrepCNN surpasses that of Resnet, Xception, and DRSN, and 
the diagnostic accuracy stays above 90% in the noiseless and low-noise 
environments, indicating that the multi-branch structure used in 
SrepCNN also gains the feature extraction capability of the network. 

To analyze the gain effect of MFCC on the classification ability of the 
model under different noise environments in a more intuitive way. The 
confusion matrices of the post-test sample classification results of 
SrepCNN and MFCC-SrepCNN are selected for plotting. Fig. 9 shows the 

Fig. 7. The data of six different SNRs in case one.  

Table 2 
The Hyper-parameters in the training process.  

Epoch Batch size Loss Function LR 

LR _max LR _min 

50 64 CrossEntropy 0.01 0.005 0.001 LR _max*1e-2  
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confusion matrix corresponding to the intermediate values of the results 
of three replicate experiments conducted by the two models under 
different noise environments. Where the vertical indicates the actual 
labels of the samples, the horizontal labels indicate the prediction re
sults. The prediction accuracy and the corresponding number of samples 
are labeled in the matrix. 

Comparing the classification of each category of SrepCNN in Fig. 9 
(a), the classification accuracy of each fault category is more than 95% 
when no noise and environmental noise SNR = 8 are added. As the size 
of the environmental noise increases to SNR = 4 and SNR = 0, the ac
curacy of some fault categories decreases to less than 90%, and when the 
environmental noise increases to SNR = − 2, the diagnostic accuracy of 
the model for Miss is only 66.15%. When the environmental noise SNR 
= − 4, the accuracy of the model for all categories except the Chipped 
category is below 60%, and the data with the real category of Miss has 
lost the diagnostic ability. Therefore, the SrepCNN model can achieve 
better accuracy for classification in the noise-free and low-noise envi
ronments, and the fault recognition ability of the model decreases as the 
noise in the samples increases, and the model has lost the diagnostic 
ability for each category when SNR = − 4. Fig. 9 (b) shows the classifi
cation of the MFCC-SrepCNN model for each fault category under 
different environmental noise. When no environmental noise is added 
and the environmental noise SNR = 8, SNR = 4, the classification ac
curacy of each fault category is 100%, and when the environmental 
noise is increased to SNR = 0, SNR = − 2, SNR = − 4, the classification 
accuracy of the fault category decreases to The classification accuracies 
of fault categories drop to more than 97%, 95%, and 91% when the 
environmental noise increases to SNR = 0, SNR = − 2, and SNR = − 4, 
respectively. When compared with the fault classification of the 
SrepCNN model, it can be seen that MFCC can well improve the classi
fication ability of the neural network in noisy environments. 

The aforementioned experiments demonstrate the beneficial impact 
of MFCC on the model’s fault classification performance across diverse 
noise environments. To further validate the enhanced feature extraction 
capability of MFCC for distinct fault categories, we employ t-distributed 
stochastic neighbor embedding (t-SNE) to visualize the impact of 
various techniques. The features extracted by the model are represented 
by the output preceding the fully connected layer. 

As shown in Fig. 10 (a), when no noise is added and the environ
mental noise SNR = 8, the data distribution of each homogeneous fault 
category is compact and the boundaries between different categories are 
more obvious. As the size of the environmental noise increases to SNR =
4, SNR = 0, and SNR = − 2, although the data distribution of each ho
mogeneous fault category is more compact, some samples of different 
fault categories have been stacked. When the ambient noise increases to 
SNR = − 4, the samples of different fault categories are stacked together 
and there is no clear boundary between the fault types. Therefore, the 
SrepCNN model can have good feature extraction ability in the noise- 
free and low-noise environment, and as the noise in the samples in
creases, the fault feature extraction ability of the model decreases, and 
when the SNR = − 4, the model can no longer extract the fault features of 
different categories well. Fig. 10 (b) shows the extraction of each fault 
feature by the MFCC-SrepCNN model under different environmental 
noises. In each noise environment, the data distribution of each same 
fault category is compact, and the boundaries between different fault 
categories are more obvious. When the ambient noise is high, some 
sample data show a small amount of misalignment or stacking. After 
comparing with the fault feature extraction of the SrepCNN model, it 
shows that MFCC can well enhance the feature extraction capability of 
the neural network under a noisy environment. 

Fig. 8. The test accuracy of different models across different noise environments in Case one.  
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Fig. 9. Confusion matrix of SrepCNN and MFCC-SrepCNN in different noise environments.  
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4.3. Case two 

4.3.1. Experimental data description 
The experimental data for case two involving the gearbox were 

sourced from Huazhong University of Science and Technology and ob
tained using a bespoke Rotating Machinery Fault Simulation (RMFS) 
platform, as illustrated in Fig. 11. This platform is an all-encompassing 
simulator for rotating machinery faults, consisting of a motor, 
controller, bearing, gearbox, and brake. It can be set up with multiple 
faults for bearings and gears respectively and can be set up with different 
operating conditions by changing the speed and load. In this paper, the 
gearbox in this platform is selected for the case study. The gearbox type 
is ZDY80 parallel shaft gearbox, which can simulate 5 types of operating 
conditions: Normal, Broken, Miss, Root, and Pitting, and the fault 
location is located in the large gear, as shown in Table 3. 

Acceleration sensors were affixed above the vertical of both the high- 
speed and low-speed end shafts of the parallel gearbox to capture ac
celeration signals in the x, y, and z directions at the two locations. 
Sampling was performed using a sliding window approach with a win
dow overlap of 0. The window length was fixed at 3136, taking into 
account the rotation speed of the device and the sampling rate of the 
sensor. Ensuring that each sample contained at least one revolution of 
the gear. The data were subjected to de-singularization and normaliza
tion. The dataset was partitioned into the training, validation, and 
testing sets using a ratio of 7:1:2, wherein the testing dataset comprised 
1135 samples. 

In this case, multiple noise samples were generated by introducing 
random Gaussian white noise to the original experimental signal at 
varying SNRs of 10, 8, 6, 4, and 2. Normal and Miss states were exam
ined as an example to observe the effect of different noise levels on 
signals. Fig. 12 shows that when no or little noise is added, there is a 
clear distinction in the sample amplitude characteristics between the 
two states. However, as the noise level increases, making it gradually 
more difficult to identify the amplitude characteristics of the two states. 

Fig. 10. t-SNE maps of SrepCNN and MFCC-SrepCNN in different noise environments.  

Fig. 11. Experimental equipment of RMFS.  

Table 3 
Fault setting method of RMFS.  

Fault label Fault type Fault processing method 

0 Normal – 
1 Broken Cut off 1/2 of a single whole tooth 
2 Miss A tooth completely missing 
3 Root A crack at the gear root 

Crack specification: width 0.2 mm, depth 1 mm 
4 Pitting Make four pitting corrosion by an electric spark 

Specification of single place: five times of electric spark  
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4.3.2. Results & discussion 
The samples are reshaped into a matrix of size [6,56,56] and input to 

each model respectively. The same training method as the above 
experimental was used for the training process. 

The model was trained and validated on a computer for 50 epochs 
before deployment on the NVIDIA Jetson Xavier NX platform using 
Docker for testing. The prediction accuracy of the model in the test set is 
used as the performance indicator of the model. It was evaluated under 
normal conditions and varying levels of noise. The resulting experi
mental outcomes are presented in Fig. 13, where the prediction accuracy 
values are the mean values of three repetitions trials. 

In Fig. 13, the accuracy fold of MFCC-SrepCNN overlaps with that of 
MFCC-SrepCNN-T, indicating that the final inference accuracy of the 
MFCC-SrepCNN model has not changed significantly after structural re- 
parameterization. In each noise environment, the accuracy fold of 
MFCC-SrepCNN is higher than that of SrepCNN, which can lead to an 
average specific inference accuracy of 9.44%. This indicates that MFCC 
can significantly improve the diagnostic ability of the model in the noise 
environment. MFCC-SrepCNN is significantly ahead of Resnet and 
Xception, highlighting the efficacy of the proposed model in noisy en
vironments. Notably, although the DRSN network exhibits better diag
nostic accuracy than MFCC-SrepCNN when the ambient noise intensity 
is SNR = 2, the model does not converge well due to the high compu
tational effort of the DRSN and the relative complexity of the model, so 
the accuracy >95% does not appear even when there is no noise and low 
noise. 

To further analyze the specific classification of the prediction results 
of different models under low and high noise, the confusion matrices of 
the test results are drawn by selecting the ambient noise intensity of 
SNR = 10 and SNR = 4. Fig. 14 shows the confusion matrix corre
sponding to the median of the results of three replicate experiments for 
each model under two noise environments, where the vertical indicates 
the actual labels of the samples, the horizontal labels indicate the 

prediction results, and the prediction accuracy and the corresponding 
number of samples are labeled in the matrix. 

Comparing the confusion matrix of MFCC-SrepCNN and MFCC- 
SrepCNN-T in Fig. 14, it can be seen that the distribution is the same, 
indicating that the structural re-parameterization does not affect the 
final classification ability of the model. For Resnet, Xception, DRSN, and 
SrepCNN, the prediction accuracy of individual categories at SNR = 10 
is above 65%, and when the noise increases to SNR = 4, the prediction 
accuracy of individual categories except DRSN decreases significantly, 
with the lowest being 26.67%, and the prediction in the noisy envi
ronment is poor. Meanwhile, the prediction accuracies of MFCC- 
SrepCNN for individual categories were above 95% and 75% at SNR 
= 10 and SNR = 4, indicating that MFCC can well enhance the classi
fication capability of the model under a noisy environment. 

The above experiments demonstrate the specific classification effects 
of different models under low and high noise. To further verify the 
feature extraction capability of MFCC-SrepCNN for different fault classes 
under low and high noise, t-SNE analysis is employed to visualize the 
impact of different models. Specifically, the output obtained before the 
fully connected layer is utilized to represent the features extracted by 
MFCC-SrepCNN and t-SNE plots for each of the models are generated, as 
depicted in Fig. 15. 

In Fig. 15, regardless of whether SNR = 10 or SNR = 4, stacking 
occurs between the features of different faults extracted by Resnet, 
Xception, and SrepCNN, and the distinction between categories is not 
obvious, indicating that the model is less capable of extracting the fea
tures of sample faults due to the interference of environmental noise. By 
comparing MFCC-SrepCNN with other models, it is observed that the 
fault samples of the same category are more closely clustered and the 
boundaries between different categories are more distinct. This suggests 
that the incorporation of MFCC positively impacts fault classification 
ability. Moreover, a comparison of the feature maps extracted by MFCC- 
SrepCNN and MFCC-SrepCNN-T reveals that the data feature 

Fig. 12. The data of six different SNRs in case two.  
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Fig. 13. The test accuracy of different methods in different noise environments in Case Two.  
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Fig. 14. Confusion matrix for each model in a noisy environment with SNR = 10 and SNR = 4.  
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distributions are identical. This further indicates that the structural re- 
parameterization does not affect the final feature extraction ability of 
the model. The DRSN in Fig. 15 shows a small amount of stacking of 
samples at both SNR = 10 and SNR = 4, indicating its superior feature 
extraction ability in noisy environments. 

4.4. Model parameter analysis 

In addition to evaluating the capability of the models in classification 
accuracy and feature extraction ability on the specific task, it is also 
necessary to assess their network complexity. Such parameters of the 
models are of great significance for considering the utility of the models 
in edge computing scenarios. Specifically, the following parameters of 
different models are compared.  

A. Params: The total number of parameters to be trained in the model 
training. It is used to measure the size of the model and to calculate 
the space complexity.  

B. Memory: The amount of memory required for model inference.  
C. Floating Point Operations (FLOPs): The theoretical amount of 

floating point arithmetics is the amount of computation in the neural 
network.  

D. Inference time: Inference time of a single sample in the edge-end 
device. 

Table 4 presents the Params, Memory, Flops parameters, and average 
inference time per single sample for each mode. The statistics for Par
ams, Memory, and Flops parameters were calculated using torchstat (A 
lightweight neural network analyzer based on PyTorch). The inference 
times were measured on the NVIDIA Jetson Xavier NX suite for the test 
dataset in Case 1. To exclude the effect of the code writing style on the 
inference time, To exclude the influence of the code writing style on the 
inference time, the model’s computing time in the GPU is monitored via 
CUDA Event. Meanwhile, the GPU is warmed up with equal intensity 
before each speed measurement. Fig. 16 illustrates these results. 

Compared with SrepCNN, the params of MFCC-SrepCNN are the 

same as 4,359,557, but the Memory and Flops are decreased by 32.05% 
and 30.32%, respectively, which indicates that MFCC does not change 
the total number of parameters of the network, and the size of MFCC 
feature matrix is reduced compared with the original samples, which 
reduces the size of individual samples input to SrepCNN, which in turn 
reduces the amount of computation, resulting in less Memory for the 
MFCC-SrepCNN. 

Compared with MFCC-SrepCNN-T, the Params, Memory, and Flops 
of MFCC-SrepCNN decreased by 26.67%, 52.51%, and 10.44%, 
respectively, indicating that the structural re-parameterization changed 
the network from multi-branch to single-way, which reduced the total 
number of FLOPs and parameters of the neural network, which in turn 
led to less Memory. 

Meanwhile, the relevant network parameters of MFCC-SrepCNN are 
all significantly smaller than those of Resnet and Xception, indicating 
that the MFCC-SrepCNN model is less complex, easier to train, and has 
less hardware overhead at runtime. Although according to the previous 
paper, DRSN can be more stable in fault diagnosis accuracy under noisy 
environments, the Memory and Flops of this network are 20.24 MB and 
1.71 GFlops, respectively, resulting in the large hardware overhead even 
when performing inference operations, and thus is not suitable for 
lightweight deployment in harsh environments full of disturbances. 

The convolution kernels of MFCC-SrepCNN models are all 3*3 conv, 

Fig. 15. t-SNE for each model in a noisy environment with SNR = 10 and SNR = 4.  

Table 4 
Test results of the complexity of each model.  

Methods Params Memory 
(MB) 

Flops 
(MFlops) 

Inference time 
(ms) 

Resnet 21,300,869 2.96 275.79 27.72 
Xception 20,818,061 9.59 338.62 22.19 
DRSN 12,573,445 20.24 1710 18.43 
SrepCNN 4,359,557 3.90 206.78 5.82 
MFCC- 

SrepCNN 
4,359,557 2.65 144.09 9.45 

MFCC- 
SrepCNN-T 

4,854,149 5.58 160.89 15.45  
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which can effectively improve the inference speed of the models on edge 
devices, so the effect of structural re-parameterization on the inference 
speed of the models is worth exploring. In three iterations of case one, 
the GPU runtime of each sample for inference is recorded, and the mean 
value was taken as the result of the test. Based on the results of 18 tests 
for each model, a visual error histogram of the inference speed of a 
single sample for different models was drawn. Analyzing Fig. 16 and 
Tables 4, it can be seen that the inference speed of the MFCC-SrepCNN 
model decreases from 15.45 ms to 9.45 ms than the MFCC-SrepCNN-T 
model. Meanwhile, compared with Resnet, Xception, and DRSN 
models, MFCC-SrepCNN has a significant advantage in model inference 
speed. This indicates that structural re-parameterization can enhance 
the inference speed of the method. Which can get the prediction results 
faster on the edge device, and then assist the monitoring system of the 
gearbox to make a timely response. 

5. Conclusion 

This study introduces a lightweight convolutional neural network- 
based approach for gearbox fault diagnosis in edge computing sce
narios. The proposed method extracts the MFCC feature matrix from 
signals, effectively suppressing noise interference and improving diag
nostic accuracy. To achieve improved inference speed and reduced 
hardware overhead on edge computing devices, we apply the principle 
of structural re-parameterization. By transforming the model from 
multiple branches during training to a single branch for inference, while 
maintaining its diagnostic capability. We conduct validation experi
ments on a public dataset and a custom test device using the NVIDIA 
Jetson Xavier NX suite as the edge computing platform. According to the 
experiment, after extracting the MFCC feature matrix, the average 
diagnostic accuracy rate in the noisy environment of the presented 
methodology is improved by 12.22% and 9.44%, respectively. After 
structural re-parameterization, the Memory of the model decreases by 
52.58%, and the inference speed is increased by 38.83%. The results 
demonstrate that our proposed methodology offers better fault diagnosis 
capability, a smaller memory footprint, and faster inference speed in 
noisy environments. 

Although, the proposed method achieves good diagnostic results 
while being lightweight. The experiments are conducted based on a 

large amount of labeled data for model training and sufficient data for 
various fault types, in the case study. And under the actual engineering 
application, there will be missing data labels or data imbalance among 
fault types. Therefore, we should investigate relevant semi-supervised or 
self-supervised learning to resolve the above issues in future work. In 
addition, the proposed method achieves lightweight in a way that can be 
effective in a specific network structure. The method has some limita
tions. Therefore, future work is expected to achieve a lightweight for 
generic models (rather than a specific network structure), through 
knowledge distillation, network pruning, etc. 
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