
Engineering Applications of Artificial Intelligence 126 (2023) 107091

Available online 6 September 2023
0952-1976/© 2023 Elsevier Ltd. All rights reserved.

A structurally re-parameterized convolution neural network-based method
for gearbox fault diagnosis in edge computing scenarios

Yanzhi Wang a, Jinhong Wu a, Ziyang Yu b, Jiexiang Hu a, Qi Zhou a,*

a School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
b School of Automation, China University of Geosciences, Wuhan, 430074, China

A R T I C L E I N F O

Keywords:
Lightweight neural network
Edge computing
Fault diagnosis
Structural re-parameterization
Noisy environments
Deep learning

A B S T R A C T

Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault
diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information.
Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources
for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a
challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge
computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the
Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise
interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure
transforms from multiple branches at training time to a single branch at inference time. This improves the
inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the
diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public
dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing plat-
form. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic ac-
curacy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%,
respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the
inference speed is increased by 38.83%.

1. Introduction

The gearbox is a vital component in industrial systems as it plays an
indispensable and critical role in power transmission. Its high load
capability and efficiency make it an extensively used component in
various sectors, including energy and transportation. However, the high
intensity of usage makes it easy to fault. Fault diagnosis can determine
the type, severity, and location of the fault in time. Which can help
identify the root cause and target repair work before a catastrophic
failure occurs. To assure the reliability and stability of industrial sys-
tems, it is necessary to research the fault diagnosis of gearboxes (Kumar,
et al., 2020; Kumar et al., 2022; Kumar et al., 2021; Lei et al., 2014; Shao
et al., 2021).

Gearboxes often operate in harsh environments with multiple types
of noise interference, which creates many difficulties for fault diagnosis.
Therefore, ensuring the effectiveness of fault diagnosis methods in harsh
environments is a key issue in gearbox health condition monitoring

research (Chen, et al., 2016; Huo et al., 2022; Tang et al., 2022; Wang
et al., 2019; Yu et al., 2022). Zhao et al. (Zhao, et al., 2019) proposed the
deep residual shrinkage network. The network uses soft thresholding as
a nonlinear transformation layer, which can eliminate features that are
not important for the diagnosis process and improves the feature
learning capability for high noise vibration signals. By experimenting
with various types of noise, high fault diagnosis accuracy is achieved.
Zhang et al. (Zhang, et al., 2020) proposed a fault diagnosis methodol-
ogy based on signal processing where the model takes the raw time
signal directly as input without any noise reduction pre-processing. In
addition, the acquired signals containing noise often have strong
nonlinear characteristics, which can lead to relatively low diagnostic
accuracy when directly applied to the original input. Therefore, Wang
et al. (Wang, et al., 2022) proposed an approach to fault diagnosis based
on time-frequency representation with DRL. By converting the vibration
signal into TF maps of uniform size, a diagnostic agent is established
under the DRL framework, and the methodology is experimentally

* Corresponding author.
E-mail address: qizhouhust@gmail.com (Q. Zhou).

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

https://doi.org/10.1016/j.engappai.2023.107091
Received 3 April 2023; Received in revised form 10 August 2023; Accepted 31 August 2023

mailto:qizhouhust@gmail.com
www.sciencedirect.com/science/journal/09521976
https://www.elsevier.com/locate/engappai
https://doi.org/10.1016/j.engappai.2023.107091
https://doi.org/10.1016/j.engappai.2023.107091
https://doi.org/10.1016/j.engappai.2023.107091
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.107091&domain=pdf

Engineering Applications of Artificial Intelligence 126 (2023) 107091

2

verified to have good generalization and stability.
The above fault diagnosis methods can achieve good results. How-

ever, most of the existing studies focus on improving the accuracy of
fault diagnosis and ignore resource efficiency. Their success relies
mainly on increasing the number of network layers or adding certain
network structures to improve the feature extraction capability of the
model, which usually increases the model parameters and hardware
overhead (Li, et al., 2022; McDonald et al., 2012; Wu et al., 2021). In
engineering applications, industrial system health monitoring is often
performed using cloud computing (Hewa, et al., 2022). The method
collects the operational data of gearboxes and uploads them to the server
on the cloud computing side through the network. Based on the suffi-
cient computing and storage resources on the cloud computing side, the
algorithm model is iteratively optimized and the inference of the
gearbox health status is realized in the cloud. Typically, gearboxes
operate in harsh environments, thus cloud computing (which requires
multiple levels of data transfer) often faces data loss and time delays.
Therefore, the use of cloud computing can affect the accuracy and
real-time fault diagnosis (Shi, et al., 2016).

In the next-generation application paradigm of artificial intelligence,
edge computing is emerging as a key enabling technology that is
attracting widespread academic attention. As a new computing para-
digm, it moves the computing of applications, data, and services from
the central node of the network (cloud servers, etc.) to the edge nodes of
the network (edge gateways, intelligent cards, etc.). Edge computing
disaggregates the large services processed by the cloud into smaller and
more manageable parts, which are distributed to the edge for process-
ing. It can reduce the response time of the system, reduce the load on the
transport network, and reduce the memory and computing overhead of
cloud computing (Chiang and Zhang, 2016; Gill et al., 2022; Kong et al.,
2022; Samie et al., 2019). Shi et al. (Shi, et al., 2016) propose a defi-
nition of edge computing, conduct research for several application cases,
and present several challenges and opportunities in the field of edge
computing. Compared with cloud servers, edge devices provide
extremely limited resources such as computation and storage, and it is a
challenging problem for edge computing to fully utilize the resources of
edge devices to satisfy the most complex services possible (Zeng, et al.,
2022). Gao et al. (Gao, et al., 2020) proposed a lightweight EdgeDRNN,
which uses incremental network algorithms to exploit temporal sparsity
in RNNs and can run on the cheapest FPGAs, reducing DRAM-weighted
memory accesses by a factor of 10. Zhao et al. (Zhao, et al., 2020)
proposed an INES technique using deep learning to reduce the compu-
tational cost by building lightweight deep neural networks through
deeply separable convolution. The methodology can be deployed based
on an edge cloud collaboration architecture, reducing the bandwidth
load and achieving high test accuracy in the field at a tenth of the
operating cost of a centralized server. In the area of industrial health
monitoring, edge computing offers new methods for processing and
mining monitoring data. Jing et al. (Jing, et al., 2022) proposed a deep
learning-based framework for cloud-based collaboration, using the
collaboration between the cloud and the edge for more accurate RUL
prediction and significantly reduced model training time. Zhang et al.
(Zhang, et al., 2021) build a fault diagnosis model for the train, using a
stacked autoencoder deep neural network, which is then deployed at the
edge with a migration learning strategy to achieve fast fault localization.
However, related studies mainly focus on developing algorithmic
models with the concept of edge computing for the research object to
improve the effectiveness of the model in relevant aspects (Errandonea,
et al., 2023; Huong et al., 2021; Khalil et al., 2021; Liang et al., 2022;
Yao et al., 2020; Zhang et al., 2023). Due to the high number of pa-
rameters and hardware overhead of traditional fault diagnosis models,
the computational resources of edge devices are limited and limited in
deployment and application. Therefore, it is important to develop a
lightweight gearbox fault diagnosis-based approach.

To address the above problems, this article introduces a gearbox fault
diagnosis methodology using a lightweight convolutional neural

network with edge computing. The following are the main contributions
of this paper:

A. A fault diagnosis process is designed based on the concept of edge
computing. The optimal weights with high diagnostic accuracy are
trained and distributed based on the hardware resources on the cloud
computing side. The inference is performed at the edge computing
side to ensure the timeliness of the diagnosis.

B. To prevent the noise in the monitoring signal from interfering with
the diagnostic accuracy, noise interfering with monitoring data is
suppressed by extracting the MFCC feature matrix, and the fault
features can be enhanced at the same time.

C. Based on the principle of structural re-parameterization, the model is
transformed from multi-branching during training to single-
branching during inference. Which can improve the inference
speed and reduce the hardware overhead of computing devices while
ensuring the fault diagnosis capability.

D. By comparing and analyzing the test results on two experimental
devices and the relevant parameters of the model. It is demonstrated
that the proposed method in this paper has better network extraction
capability, smaller memory footprint, and faster speed.

The rest of the paper is structured as follows. Section 2 presents the
background of the technique from related work. The details of the
proposed method are presented in Section 3. Experiments and evalua-
tion are demonstrated in Section 4. Finally, Section 5 presents the con-
clusions and future work.

2. Related works

The related works are briefly reviewed in this section, including
work on edge computing, lightweight neural network, and Mel-
frequency cepstral coefficients feature.

2.1. Edge computing-based fault diagnosis

Edge computing is closer to the monitored device, allowing for faster
processing and fewer delays. Applying this distributed architecture to
the fault diagnosis of the device, data analysis, and diagnosis results
generation are closer to the target device. Therefore, helps the device to
make immediate feedback to the diagnosis results. And it can filter most
of the rubbish data during device operation, effectively reducing the
cloud loading. Making large-scale device connectivity and large-scale
data processing possible in monitoring industrial device health. Qian
et al. (Qian, et al., 2019) propose a method for real-time fault diagnosis
and dynamic control of rotating machinery based on edge computing.
Sensor signals are collected in parallel by a designed edge computing
node. Then, feature extraction and fault diagnosis are performed. The
motor can be controlled when an emergency fault is diagnosed. Ren
et al. (Ren, et al., 2022) propose a cloud-edge collaborative adaptation
approach for fault diagnosis for scene-specific equipment in cloud
manufacturing systems. The variety of diagnosable faults is extended by
a sampling space expansion method. Wang et al. (Qizhao, et al., 2021)
propose an efficient asynchronous federated learning method. This
method allows edge nodes to select part of the model from the cloud for
asynchronous updates based on local data distribution, thereby reducing
computation and communication. This method can reduce resource re-
quirements at the edge, reduce communication, and improve training
speed in heterogeneous edge environments. Therefore, the benefits of
edge computing are as follows:

A. Low delay: computing power is deployed close to the device, and
device requests are responded to in real-time.

B. Operating at low bandwidth: Moving work closer to users or equip-
ment, can reduce the impact of bandwidth limitation.

Y. Wang et al.

Engineering Applications of Artificial Intelligence 126 (2023) 107091

3

C. Privacy protection: Data is collected locally, analyzed locally, and
processed locally, reducing the exposure of data to public networks
and protecting data privacy effectively.

Edge computing offers a wealth of benefits. However, its adoption
comes with several significant challenges. Notably, one of the key
challenges is the inherent limitation of computing capacity at edge
nodes. Often constrained by size, power, and resource availability, these
devices can struggle to handle resource-intensive computing tasks.

2.2. Lightweight neural network

In edge computing scenarios, there are usually abundant software
and hardware resources available in the cloud for model training, but
limited resources in the edge for model inference. Therefore, we aim to
have a more complex model structure for training to achieve higher
accuracy and a smaller model structure for inference that preserves the
same level of accuracy. Dai et al. (Dai, et al., 2021) propose an improved
knowledge distillation method, which enables the transfer of the com-
plex mapping functions learned by cumbersome models to relatively
simpler models. The method can be effectively applied to intelligent
edge computing. Fang et al. (Yu, et al., 2021) propose a novel global
pruning method. Formulating the pruning problem as a performance
improvement sub-problem and a global pruning sub-problem by intro-
ducing an alternating direction method of multipliers. The method can
compress and accelerate the DNNs for efficient edge computing. Huang
et al. (Huang, et al., 2023) propose an integrated cloud-edge-device
framework that connects the edge, the remote cloud, with the device
through cross-platform web technology for adaptive deep learning ser-
vices, achieving lower latency, lower mobile power, and higher system
throughput. However, whether pruning or knowledge distillation, it
requires secondary training and has some difficulty in training.

Since a set of training parameters of a neural network corresponds to
a network structure, a set of parameters of one network structure can be
transformed into another set of parameters, and the transformed pa-
rameters can be used for the other structure. The two network structures
are equivalent as the conversion of the parameters is equal, which is
called structural re-parameterization (Ding et al., 2019; Ding et al.,
2021a,b). Structural re-parameterization is implemented by first con-
structing a network structure for training and a network structure for
inference, then converting the parameters from training equivalently to
another set of parameters for inference.

2.3. Mel-Frequency Cepstral Coefficients feature

MFCC can simulate the nonlinear characteristics of the human ear
with a Mel filter bank and is usually used to extract signal features in
sound signal processing. The core idea of MFCC is based on the fact that
human has different auditory sensitivities to the incoming sound of
different frequencies, i.e., the lower frequency with the higher resolu-
tion. MFCC feature coefficients describe the spectral envelop charac-
teristics of the sound signal and can suppress interference band
information, which has a high recognition rate in practical applications
(Li, et al., 2022; Yan et al., 2022). The extraction steps of the MFCC
feature are shown in Fig. 1. The following will be introduced separately:

Step 1: Framing & windowing. Because MFCC is usually used in
automatic speech, and the audio signal is constantly changing, the
signal is framed by the window function to obtain a stable frame

signal. The commonly used window function is the Hann and Ham-
ming window, whose expression is:

H(n)= a0 − (1 − a0)cos
(

2πx
L

)

, (n= 0, 1,…, L − 1) (1)

where L refers to how many data points are contained in every frame.
If a0 is set as 0.54 or 0.5, the above expression is named Hamming
window or Hann window respectively. Here we utilize the Hamming
window function.
Step 2: Discrete Fourier transforms (DFT). As a result of the inherent
limitations in analyzing signal characteristics in the time domain, it
is customary to convert signals into energy distributions in the fre-
quency domain for analysis. The spectrum T(k) of the signal frag-
ment H(n) is extracted by applying the discrete Fourier transform to
the signal fragment H(n) by the formula:

T(k)=
∑L− 1

n=0
H(n)e−

j2πkn
L , (n= 0, 1, ...,L − 1) (2)

Step 3: Power spectrum calculations. Since the power spectrum can
reflect the main signal features, the power spectrum Pt is obtained by
calculating the modular square:

Pt= T(n). T̂(n) (3)

Step 4: Mel triangle filtering. Motivated by human hearing that the
cochlea is a series of filter banks, which solely focuses on some
specific frequencies. Some band-pass filters are utilized to separate
them, i.e., the Mel filter bank. The first filter is very narrow since the
low-frequency space possesses a lot of information. As the fre-
quencies get higher the filters get wider, which is consistent with the
human ear. To offset this feature, the Mel scale is utilized to convert
frequency f, which is written as:

fmel = 2595 lg(1+ f / 700) (4)

The Mel scale describes the nonlinear characteristics of human
auditory frequency perception and tells us exactly how to space the
filter banks and how wide to make them. Next, the information in
each frequency band is filtered using T triangular filters, and the
process is as follows:

Ht(n)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
2 × (n − f (t − 1))

(f (t + 1) − f (t − 1)) × (f (t) − f (t − 1))
,

(2 × f (t + 1) − n)
(f (t + 1) − f (t − 1)) × (f (t + 1) − f (t))

,

0,

n < f (t − 1)
f (t − 1) ≤ n ≤ f (t)
f (t) ≤ n ≤ f (t + 1)
n ≥ f (t + 1)

(5)

where t = 1,2,3,⋯ 24. which means 24 independent T triangular
filters, f(t) is the tth central frequency, n = 0,1, ... , L/2 – 1 is the Mel
scale in each filter. Here, we have:

∑T − 1

t=0
Ht(n)= 1 (6)

Step 5: The logarithmic spectrum S(t). To make the data processing
results more robust to noise, the output power spectrum is taken as a
logarithmic operation to obtain the logarithmic spectrum S(t) for
each filter in Step 4, and the formula is:

Fig. 1. MFCC feature extraction and MFCC feature matrix construction process.

Y. Wang et al.

Engineering Applications of Artificial Intelligence 126 (2023) 107091

4

S(t)= ln

(
∑L− 1

n=0
|Pt|2Ht(n)

)

(0≤ t≤T) (7)

Where: Ht(n) is the tth filter bank, S(t) is the logarithmic spectrum, Pt
is the dispersive power spectrum obtained in step 3, and T is the
number of filter banks. The logarithmic operation reflects that the
human does not hear loudness on a linear scale. 8 times the energy
needs to be put in if we want to double the sound volume.
Step 6: Discrete cosine transforms (DCT). Because the filter banks are
overlapping, the above energies are quite correlated with each other.
The transformation is used to calculate the spectral components of
different frequency bands, making the dimensional vectors of each
band independent of each other, thus obtaining the information of
each frequency band of the signal by the following formula:

c(x)=
∑L− 1

t=0
S(t)cos

(
xπ(t − 0.5)

T

)

, 0≤ x ≤ T (8)

where c(x) is the MFCC feature of the input data sample. S(t) is the tth

logarithmic spectrum.

3. Proposed method

In this section, the main procedure of the fault diagnosis methodol-
ogy using edge computing and the methodology of constructing the
MFCC feature matrix are introduced. The proposed lightweight con-
volutional neural network and the implementation principle of structure
re-parameterization are elaborated on in detail.

3.1. Edge computing-based fault diagnosis method for gearboxes

To solve the problems of inconspicuous fault characteristics of
gearbox monitoring signals and lightweight deployment of models, the
main flow chart of the proposed edge computing-based gearbox fault
diagnosis methodology is given in Fig. 2. The method is divided into two
parts: the cloud computing side, which is far from the gearbox, and the
edge computing side, which is close to the gearbox. At the cloud

computing side, the monitoring data from the edge side is firstly labeled,
the data is divided into the training set and validation set, the signal
samples are obtained by sliding window sampling, the MFCC feature
matrix is extracted from the signal samples, the MFCC is imported into
the SrepCNN-T neural network, and iterative training is performed
based on the powerful computing performance of cloud computing.
Finally, the optimal weights of the neural network are sent down to the
edge side after training. At the edge computing side, firstly, the collected
real-time monitoring data is sampled by sliding window and the MFCC
feature matrix of samples is extracted, and then the MFCC feature matrix
of the sample is imported into the SrepCNN-I neural network, and the
SrepCNN-I neural network has imported the optimal weights of the
neural network issued from the cloud computing side, then the accurate
fault diagnosis results can be obtained quickly at the edge side. It is
worth mentioning that in engineering applications, the training of
models can be done periodically on the cloud, depending on the actual
situation. The updated model weights are sent down to the edge through
file streams, message queues, etc. In summary, the edge computing-
based gearbox fault diagnosis methodology consists of two links:
MFCC matrix acquisition and Srep-CNN for fault diagnosis.

3.2. MFCC feature matrix construction

The monitoring signals are full of noise and other useless information
due to the working conditions and environment, which affects the ac-
curacy of the model heavily. The MFCC feature matrix involves MFCC
feature extraction and MFCC feature matrix construction.

Since the MFCC features only describe the static spectral envelope
information of signals, in reality, the fault information of gearboxes is
mostly hidden in the dynamic information. Firstly, the MFCC features of
gearbox monitoring data are extracted based on the method introduced
in 2.1. More fault information is obtained from the MFCC features using
first-order difference calculation and second-order difference calcula-
tion. The calculation process of the first-order difference and the second-
order difference is as follows.

c1(x)=
1
̅̅̅̅̅̅̅̅̅̅̅̅
∑i=n

i=− n
i2

√
∑i=n

i=− n
i× c(x+ i) (9)

c2(x)=
1
̅̅̅̅̅̅̅̅̅̅̅̅
∑i=n

i=− n
i2

√
∑i=n

i=− n
i× c1(x+ i) (10)

The MFCC feature matrix Mdata constructed in this section is obtained
by combining the obtained c(x), c1(x) and c2(x), which is performed as:

Mdata = [c(x)c1(x)c2(x)] (11)

Where: [•] indicates the first and last concatenation of the different
inputs.

3.3. Structural Re-parameterized convolutional neural network

3.3.1. Network architecture
To achieve a lightweight deployment of the network, we designed a

structurally re-parameterized convolutional neural network called
SrepCNN, and the network structure is shown in Fig. 3. The network
adopts a modular design, and the number of layers of module A and
module B can be set according to the actual application scenario. By
adjusting the depth of it, the feature extraction capability can be
changed. The network is divided into a train state and an inference state,
and the network in the two states is called SrepCNN-T and SrepCNN-I,
respectively.

SrepCNN-T consists of multiple network stages in series, each
network module consisting of a 3*3 convolutional branch, a 1*1

Fig. 2. The procedure of gearbox fault diagnosis method based on
edge computing.

Y. Wang et al.

Engineering Applications of Artificial Intelligence 126 (2023) 107091

5

convolutional branch, and an identity branch, followed by a convolu-
tional kernel and a batch normalization (BN) layer. and the SrepCNN-I
consists of multiple 3*3 convolutional modules in series.

When the model is trained iteratively on the cloud side and is in the
training session, the SrepCNN-T network is used. Since the identity
branch can be considered as degenerate 1*1 conv and 1*1 conv can be
further considered as degenerate 3*3 conv. Therefore, after the model
training is finished, a simple algebraic transformation is applied to the
model weights to remove the identity branch and 1*1 conv branch
through structure re-parameterization, and the new weights are saved
and deployed to the edge for testing.

When the model has been deployed on the edge computing platform
and is in inference session, the SrepCNN-I network is used. The struc-
tural re-parameterization method is used to transform the network
structure, mainly considering the following reasons:

A. Better network extraction capability: Inspired by Resnet, the
multi-branch architecture can be seen as a collection of many paths
of differing lengths, making the model an implicit collection of many
shallower models. Which can increase the feature extraction faculty
of the network. Residual networks introduce short paths which can
carry a gradient throughout the extent of very deep networks. Which
avoids the vanishing gradient problem, and makes it more conducive
to training (Belongie, et al., 2016; He et al., 2016).

B. Smaller memory usage: Considering the limited resources of edge-
side devices and the increased memory peak due to the feature maps
of each branch need to be saved until the summation is completed,
the multi-branch network structure is memory inefficient as shown
in Fig. 3. Compared with the multi-branch structure of T-network,
the single-branch structure of I-network can significantly reduce the
cost of memory.

C. Faster speed: SrepCNN-I uses only 3*3 conv because it is optimized
in GPU and CPU by many computing libraries (e.g., Nvidia cuDNN &
Intel MKL), and the theoretical computing density of 3*3 conv is
about 4 times higher than other convolutional methods, so using 3*3
conv can effectively improve the model’s inference speed on edge
devices (Chetlur, et al., 2014; Lavin and Gray, 2016).

3.3.2. Implementation of structural re-parameterization
When the model is iteratively trained to obtain the optimal weights,

the structural re-parameterization methodology is applied to convert the
parameters of the SrepCNN-T network structure into another set of pa-
rameters coupled with the SrepCNN-I network structure. We can
equivalently replace the former with the latter, thus achieving a change
in the network architecture. The conversion process is shown in Fig. 4.

Fig. 4. (a) depicts the changes in the structure of the model during
the conversion of the trained SrepCNN-T basic module into a single 3*3
conv layer in the SrepCNN-I network, and Fig. 4. (b) depicts the
parameter changes of the neural network. We use M(k) ∈ [C1,C2, k, k] to
describe a convolutional layer with a convolutional kernel k*k, where C1
and C2 are the number of input channels and output channels, respec-
tively. The computational process for the BN layer is described using the
following equation:

BN(XBN , α, β, γ, μ)= XBN − α
̅̅̅̅̅̅̅̅̅̅̅̅̅
β2 + ε

√ ⋅ γ + μ (12)

Where XBN is the input for the BN layer, α, β, γ, μ indicates the cumulative
mean, standard deviation, and learned scale factor of the BN layer and
bias, respectively, and ε is a very small constant that can prevent the
denominator from being zero. The BN layer in each branch of the basic
module of the SrepCNN-T network can be further transformed by:

BN(XBN , α, β, γ, μ)= γ
β

⋅XBN +
(

−
α⋅γ
β

+ μ
)

=M′(k) ∗ XConv + μ(k) (13)

Where M′(k) refer to the “virtual convolutional layer” of the branch in the
process of structural reparameterization. This transformation also ap-
plies to the identity, since the identity can be considered as a 1*1
convolution with the unit matrix as the convolution kernel. Then the
result of a SrepCNN-T basic module can be expressed as:

W(X)=F(X)+D(X)+ Identity(X)
= BN

(
M′(3) ∗ X, α(3), β(3), γ(3), μ(3))

+BN
(
M′(1) ∗ X, α(1), β(1), γ(1), μ(1))

+BN
(
X, α(0), β(0), γ(0), μ(0))

= M′(3) ∗ X+ μ(3) +M′(1) ∗ X+ μ(1) +X+ μ(0)

= M′ ∗ X+ μ′

(14)

Where M′ refer to the “virtual convolutional layer” of three-branch after
reparameterizing. The three additive numbers in the formula represent
the output of the 3*3 conv branch, 1*1 conv branch, and identity in the
basic module of SrepCNN-T, respectively. The identity and 1*1 conv
branches are filled with 0 to be able to transform to the size of 3*3.
Further, the 1*1 kernel is summed to the centroid of the 3*3 kernel to
obtain the final 3*3 kernel, and the three deviation vectors are summed
to get the total deviation, completing the constant transformation of
integrating the three branches into one 3*3 conv. Thus the SrepCNN-I
can be used to equivalently replace the SrepCNN-T.

Fig. 3. Structure of structurally re-parameterized convolutional neural networks.

Y. Wang et al.

Engineering Applications of Artificial Intelligence 126 (2023) 107091

6

4. Case studies

4.1. Experimental method

In this paper, all case studies were conducted on a computer [
IntelCore i7-11700K@3.60GHz processor, NVIDIA GeForce RTX 3070
GPU, 32.0 GB of RAM], and a Jetson Xavier NX kit [NVIDIA Carmel
ARM CPU, NVIDIA Volta GPU with 48 Tensor Cores, 8.0 GB RAM]. The
first one is used as the cloud device and the second one as the edge
device. On the cloud device, the dependency environment of models is
based on Windows. on the edge device, it is deployed via Docker (an
open-source application container engine). In addition, models were
written in Python 3.9 and Pytorch 1.11.0.

The experimental procedure is shown in Fig. 5. The experimental
data set is divided into a training data set, a verification data set, and a
test data set. The training and verification data sets are saved in the
cloud device. The test data set is saved in the edge device. Models are
trained on the cloud device to obtain the best weight. The weight is
downlinked to the edge device via file streams. On the edge device,
models load the weight and run to get the test results. It is worth noting
that in the engineering application of the proposed method, the updat-
ing and distribution of the best weight can be done periodically. In the
experiments, since there is no data update in real-time during the
training process, the downlink of model weight is performed only once.

The MFCC-SrepCNN-T model is first trained on the cloud device, the
structure is re-parameterized based on the best weights, and the re-
parameterized weights are sent down to the edge devices. The MFCC-

SrepCNN-I model is deployed on edge devices. Given the difficulty of
the experiments, the network structure used in the two application cases
in this paper, a and b in Stage-A and Stage-B take values of 4 and 6,
respectively. The Hyper-parameters of MFCC-SrepCNN in the experi-
ment are shown in Table 1. To verify the efficiency of the proposed
method, the following models are used for comparison experiments:

A. Resnet: The degradation problem of deep networks is solved by
residual connectivity, enabling the training of deeper networks (He,
et al., 2016).

B. Xception: The network uses residual connectivity to enhance feature
extraction, and uses depthwise separate convolution to achieve
complete decoupling of cross-channel correlation and spatial corre-
lation (Chollet, 2017).

C. Deep residual shrinkage networks (DRSN): Soft thresholding in
the network structure can filter noise-related features, effectively
improving the ability to identify features from noisy data. It is a
classical model used in recent years for fault diagnosis in noisy en-
vironments (Zhao, et al., 2019).

D. SrepCNN: The samples are reshaped and fed directly into SrepCNN-T
for iterative training, and tested using SrepCNN-I. The difference
between this method and the proposed method is that the MFCC
matrix is not extracted in this method.

E. MFCC-SrepCNN-T: The MFCC feature matrix of samples is extracted
and then input to SrepCNN-T for iterative training, and the test
session still uses SrepCNN-T. The difference between this method

Fig. 4. Implementation process of structural re-parameterization.

Y. Wang et al.

mailto:i7-11700K@3.60GHz

Engineering Applications of Artificial Intelligence 126 (2023) 107091

7

and the proposed method is that this method does not have structural
re-parameterization.

F. MFCC-SrepCNN: The proposed method. The MFCC feature matrix of
samples is extracted and then input to SrepCNN-T for iterative
training, the model is structurally re-parameterized, and SrepCNN-I
is used for the testing session.

Xception, Resnet, and DRSN are the classical and efficient convolu-
tional neural networks in recent years. These models are chosen to
validate the overall performances of the suggested methods in a noisy
environment. In addition, SrepCNN is chosen as a comparison method to
verify the gain effect of MFCC on the features extract capability of the
method in a noisy environment. MFCC-SrepCNN-T is chosen as a com-
parison method to verify the effect of structural re-parameterization in
MFCC-SrepCNN on the diagnostic ability of the method and the accel-
eration effect of the method. To verify the advantages of the proposed
method, two real gearbox datasets are used to compare the performance
metrics of each model, and model complexity metrics such as Params,
Flops, Memory, and inference speed of a single sample are calculated for
each model.

4.2. Case one

4.2.1. Experimental data description
The experimental gearbox data for Case 1 was obtained from the

drivetrain dynamic simulator (DDS) at Southeast University, China. The
simulation platform is shown in Fig. 6, the DDS can simulate a variety of
bearing and gear operating conditions, and the gear operating condition
data in this dataset were selected for the case study (Shao, et al., 2019).

The acceleration signals in the x, y, and z directions of the experi-
mental platform were collected using acceleration sensors attached to
the parallel gearbox and planetary gearbox housings. Sampling was
performed using a sliding window approach with a window overlap of 0.
The window length was fixed at 3136, taking into account the rotation
speed of the device and the sampling rate of the sensor. Ensuring that
each sample contained at least one revolution of the gear. The data are
subjected to a de-singularization and normalization operation. In this
paper, the original experimental signal is augmented with multiple noise
samples by incorporating random Gaussian white noise. The signal-to-
noise ratio (SNR) is used as a metric to quantify the magnitude of the
added noise relative to the original experimental signal. The SNR

Table 1
The hyper-parameters of MFCC-SrepCNN.

Number of modules Layer Name Size Layer Name Size

1 MFCC-SrepCNN-T MFCC channels:6, mels:64 MFCC-SrepCNN-I MFCC 6 channels, 64 mels
1 3*3 Conv channels:48, stride:1 3*3 Conv 48 channels, stride 1

1*1Conv channels:48, stride:1
1 3*3 Conv channels:48, stride:2 channels:48, stride:2 3*3 Conv 48 channels, stride 2

1*1Conv
4 3*3 Conv channels:96, stride:2 → 1a 3*3 Conv channels:96, stride:2 → 1

1*1Conv channels:96, stride:2 → 1
Identity /

6 3*3 Conv channels:192, stride:2 → 1 3*3 Conv channels:192, stride:2 → 1
1*1Conv channels:192, stride:2 → 1
Identity /

1 3*3 Conv channels:1280, stride:2 3*3 Conv channels:1280, stride:2
1*1Conv channels:1280, stride:2

1 Linear out_features:5 Linear out_features:5

a Stride:2 → 1: The stride of the first module in this stage is 2, the other values are 1.

Fig. 6. Experimental equipment of DDS.

Fig. 5. The procedure of experimental.

Y. Wang et al.

Engineering Applications of Artificial Intelligence 126 (2023) 107091

8

function is expressed as:

SNR= 10 log10(Es /En)(dB) (15)

Where Es is the energy of the data and En is the energy of Gaussian white
noise. In general, SNR = ∞ indicates the case of no added noise.

To observe the effect of different noise levels on samples, Health and
Miss states were examined as an example. Five different SNRs were
applied to the same sample. Fig. 7 shows that without added noise, there
is a clear distinction in the signal amplitude characteristics between the
two states. However, as the noise level increases, it becomes increasingly
challenging to identify the amplitude characteristics of the two states.

The completed dataset contains 668 samples for each operating state,
which are randomly disrupted and subsequently partitioned into the
training, validation, and testing sets using a ratio of 7:1:2. The different
working states Health, Chipped, Miss, Root, and Surface are also labeled
with 0–4 respectively.

4.2.2. Results & discussion
The samples input to each network are reshaped into a matrix of size

[6, 56, 56], respectively. The Hyper-parameters of the model training
during the experiments are shown in Table 2.

The Batch size is set to 64 considering the convergence and memory.
Epoch is set to 50 according to the convergence of each model, in the
pre-experiment. And CrossEntropy, which is the frequent loss function.
CosineAnnealingLR is used to modify the learning rate (LR) of the

network during training. The method adjusts the LR by the cosine
function, which can make the learning take the lead in a slow decline,
then accelerate the decline, and then slowly decline again. This method
yields advantageous results in accelerating model convergence and
enhancing model efficacy. Considering the differences of each model,
three sets of experiments were set up according to the maximum LR. The
group with the highest average accuracy was chosen as the final
experimental result of the model.

To evaluate the proposed methodology in comparison with other
classical techniques, three replicate experiments were conducted to re-
cord the classification accuracy under normal conditions and different
noise environments, The experimental outcomes are presented in Fig. 8,
where the prediction accuracy values of the model represent mean
values of the three replicate experiments. It can be seen that the accu-
racy of MFCC-SrepCNN overlaps with that of MFCC-SrepCNN-T under
each noise condition, indicating that the structural re-parameterization
does not change the final test accuracy of the MFCC-SrepCNN model.
The accuracy fold of MFCC-SrepCNN is above the accuracy fold of
SrepCNN in each noisy environment, especially the accuracy of MFCC-
SrepCNN is 43.99% higher than that of SrepCNN at SNR = − 4, indi-
cating that MFCC can significantly increase the diagnostic capability of
the approach in the presence of noise. MFCC-SrepCNN is significantly
ahead of Resnet, Xception, and DRSN, suggesting that the proposed
model exhibits good diagnostic capability in noisy environments
compared with the classical model. In addition, the mean diagnostic
accuracy of SrepCNN surpasses that of Resnet, Xception, and DRSN, and
the diagnostic accuracy stays above 90% in the noiseless and low-noise
environments, indicating that the multi-branch structure used in
SrepCNN also gains the feature extraction capability of the network.

To analyze the gain effect of MFCC on the classification ability of the
model under different noise environments in a more intuitive way. The
confusion matrices of the post-test sample classification results of
SrepCNN and MFCC-SrepCNN are selected for plotting. Fig. 9 shows the

Fig. 7. The data of six different SNRs in case one.

Table 2
The Hyper-parameters in the training process.

Epoch Batch size Loss Function LR

LR _max LR _min

50 64 CrossEntropy 0.01 0.005 0.001 LR _max*1e-2

Y. Wang et al.

Engineering Applications of Artificial Intelligence 126 (2023) 107091

9

confusion matrix corresponding to the intermediate values of the results
of three replicate experiments conducted by the two models under
different noise environments. Where the vertical indicates the actual
labels of the samples, the horizontal labels indicate the prediction re-
sults. The prediction accuracy and the corresponding number of samples
are labeled in the matrix.

Comparing the classification of each category of SrepCNN in Fig. 9
(a), the classification accuracy of each fault category is more than 95%
when no noise and environmental noise SNR = 8 are added. As the size
of the environmental noise increases to SNR = 4 and SNR = 0, the ac-
curacy of some fault categories decreases to less than 90%, and when the
environmental noise increases to SNR = − 2, the diagnostic accuracy of
the model for Miss is only 66.15%. When the environmental noise SNR
= − 4, the accuracy of the model for all categories except the Chipped
category is below 60%, and the data with the real category of Miss has
lost the diagnostic ability. Therefore, the SrepCNN model can achieve
better accuracy for classification in the noise-free and low-noise envi-
ronments, and the fault recognition ability of the model decreases as the
noise in the samples increases, and the model has lost the diagnostic
ability for each category when SNR = − 4. Fig. 9 (b) shows the classifi-
cation of the MFCC-SrepCNN model for each fault category under
different environmental noise. When no environmental noise is added
and the environmental noise SNR = 8, SNR = 4, the classification ac-
curacy of each fault category is 100%, and when the environmental
noise is increased to SNR = 0, SNR = − 2, SNR = − 4, the classification
accuracy of the fault category decreases to The classification accuracies
of fault categories drop to more than 97%, 95%, and 91% when the
environmental noise increases to SNR = 0, SNR = − 2, and SNR = − 4,
respectively. When compared with the fault classification of the
SrepCNN model, it can be seen that MFCC can well improve the classi-
fication ability of the neural network in noisy environments.

The aforementioned experiments demonstrate the beneficial impact
of MFCC on the model’s fault classification performance across diverse
noise environments. To further validate the enhanced feature extraction
capability of MFCC for distinct fault categories, we employ t-distributed
stochastic neighbor embedding (t-SNE) to visualize the impact of
various techniques. The features extracted by the model are represented
by the output preceding the fully connected layer.

As shown in Fig. 10 (a), when no noise is added and the environ-
mental noise SNR = 8, the data distribution of each homogeneous fault
category is compact and the boundaries between different categories are
more obvious. As the size of the environmental noise increases to SNR =
4, SNR = 0, and SNR = − 2, although the data distribution of each ho-
mogeneous fault category is more compact, some samples of different
fault categories have been stacked. When the ambient noise increases to
SNR = − 4, the samples of different fault categories are stacked together
and there is no clear boundary between the fault types. Therefore, the
SrepCNN model can have good feature extraction ability in the noise-
free and low-noise environment, and as the noise in the samples in-
creases, the fault feature extraction ability of the model decreases, and
when the SNR = − 4, the model can no longer extract the fault features of
different categories well. Fig. 10 (b) shows the extraction of each fault
feature by the MFCC-SrepCNN model under different environmental
noises. In each noise environment, the data distribution of each same
fault category is compact, and the boundaries between different fault
categories are more obvious. When the ambient noise is high, some
sample data show a small amount of misalignment or stacking. After
comparing with the fault feature extraction of the SrepCNN model, it
shows that MFCC can well enhance the feature extraction capability of
the neural network under a noisy environment.

Fig. 8. The test accuracy of different models across different noise environments in Case one.

Y. Wang et al.

Engineering Applications of Artificial Intelligence 126 (2023) 107091

10

Fig. 9. Confusion matrix of SrepCNN and MFCC-SrepCNN in different noise environments.

Y. Wang et al.

Engineering Applications of Artificial Intelligence 126 (2023) 107091

11

4.3. Case two

4.3.1. Experimental data description
The experimental data for case two involving the gearbox were

sourced from Huazhong University of Science and Technology and ob-
tained using a bespoke Rotating Machinery Fault Simulation (RMFS)
platform, as illustrated in Fig. 11. This platform is an all-encompassing
simulator for rotating machinery faults, consisting of a motor,
controller, bearing, gearbox, and brake. It can be set up with multiple
faults for bearings and gears respectively and can be set up with different
operating conditions by changing the speed and load. In this paper, the
gearbox in this platform is selected for the case study. The gearbox type
is ZDY80 parallel shaft gearbox, which can simulate 5 types of operating
conditions: Normal, Broken, Miss, Root, and Pitting, and the fault
location is located in the large gear, as shown in Table 3.

Acceleration sensors were affixed above the vertical of both the high-
speed and low-speed end shafts of the parallel gearbox to capture ac-
celeration signals in the x, y, and z directions at the two locations.
Sampling was performed using a sliding window approach with a win-
dow overlap of 0. The window length was fixed at 3136, taking into
account the rotation speed of the device and the sampling rate of the
sensor. Ensuring that each sample contained at least one revolution of
the gear. The data were subjected to de-singularization and normaliza-
tion. The dataset was partitioned into the training, validation, and
testing sets using a ratio of 7:1:2, wherein the testing dataset comprised
1135 samples.

In this case, multiple noise samples were generated by introducing
random Gaussian white noise to the original experimental signal at
varying SNRs of 10, 8, 6, 4, and 2. Normal and Miss states were exam-
ined as an example to observe the effect of different noise levels on
signals. Fig. 12 shows that when no or little noise is added, there is a
clear distinction in the sample amplitude characteristics between the
two states. However, as the noise level increases, making it gradually
more difficult to identify the amplitude characteristics of the two states.

Fig. 10. t-SNE maps of SrepCNN and MFCC-SrepCNN in different noise environments.

Fig. 11. Experimental equipment of RMFS.

Table 3
Fault setting method of RMFS.

Fault label Fault type Fault processing method

0 Normal –
1 Broken Cut off 1/2 of a single whole tooth
2 Miss A tooth completely missing
3 Root A crack at the gear root

Crack specification: width 0.2 mm, depth 1 mm
4 Pitting Make four pitting corrosion by an electric spark

Specification of single place: five times of electric spark

Y. Wang et al.

Engineering Applications of Artificial Intelligence 126 (2023) 107091

12

4.3.2. Results & discussion
The samples are reshaped into a matrix of size [6,56,56] and input to

each model respectively. The same training method as the above
experimental was used for the training process.

The model was trained and validated on a computer for 50 epochs
before deployment on the NVIDIA Jetson Xavier NX platform using
Docker for testing. The prediction accuracy of the model in the test set is
used as the performance indicator of the model. It was evaluated under
normal conditions and varying levels of noise. The resulting experi-
mental outcomes are presented in Fig. 13, where the prediction accuracy
values are the mean values of three repetitions trials.

In Fig. 13, the accuracy fold of MFCC-SrepCNN overlaps with that of
MFCC-SrepCNN-T, indicating that the final inference accuracy of the
MFCC-SrepCNN model has not changed significantly after structural re-
parameterization. In each noise environment, the accuracy fold of
MFCC-SrepCNN is higher than that of SrepCNN, which can lead to an
average specific inference accuracy of 9.44%. This indicates that MFCC
can significantly improve the diagnostic ability of the model in the noise
environment. MFCC-SrepCNN is significantly ahead of Resnet and
Xception, highlighting the efficacy of the proposed model in noisy en-
vironments. Notably, although the DRSN network exhibits better diag-
nostic accuracy than MFCC-SrepCNN when the ambient noise intensity
is SNR = 2, the model does not converge well due to the high compu-
tational effort of the DRSN and the relative complexity of the model, so
the accuracy >95% does not appear even when there is no noise and low
noise.

To further analyze the specific classification of the prediction results
of different models under low and high noise, the confusion matrices of
the test results are drawn by selecting the ambient noise intensity of
SNR = 10 and SNR = 4. Fig. 14 shows the confusion matrix corre-
sponding to the median of the results of three replicate experiments for
each model under two noise environments, where the vertical indicates
the actual labels of the samples, the horizontal labels indicate the

prediction results, and the prediction accuracy and the corresponding
number of samples are labeled in the matrix.

Comparing the confusion matrix of MFCC-SrepCNN and MFCC-
SrepCNN-T in Fig. 14, it can be seen that the distribution is the same,
indicating that the structural re-parameterization does not affect the
final classification ability of the model. For Resnet, Xception, DRSN, and
SrepCNN, the prediction accuracy of individual categories at SNR = 10
is above 65%, and when the noise increases to SNR = 4, the prediction
accuracy of individual categories except DRSN decreases significantly,
with the lowest being 26.67%, and the prediction in the noisy envi-
ronment is poor. Meanwhile, the prediction accuracies of MFCC-
SrepCNN for individual categories were above 95% and 75% at SNR
= 10 and SNR = 4, indicating that MFCC can well enhance the classi-
fication capability of the model under a noisy environment.

The above experiments demonstrate the specific classification effects
of different models under low and high noise. To further verify the
feature extraction capability of MFCC-SrepCNN for different fault classes
under low and high noise, t-SNE analysis is employed to visualize the
impact of different models. Specifically, the output obtained before the
fully connected layer is utilized to represent the features extracted by
MFCC-SrepCNN and t-SNE plots for each of the models are generated, as
depicted in Fig. 15.

In Fig. 15, regardless of whether SNR = 10 or SNR = 4, stacking
occurs between the features of different faults extracted by Resnet,
Xception, and SrepCNN, and the distinction between categories is not
obvious, indicating that the model is less capable of extracting the fea-
tures of sample faults due to the interference of environmental noise. By
comparing MFCC-SrepCNN with other models, it is observed that the
fault samples of the same category are more closely clustered and the
boundaries between different categories are more distinct. This suggests
that the incorporation of MFCC positively impacts fault classification
ability. Moreover, a comparison of the feature maps extracted by MFCC-
SrepCNN and MFCC-SrepCNN-T reveals that the data feature

Fig. 12. The data of six different SNRs in case two.

Y. Wang et al.

Engineering Applications of Artificial Intelligence 126 (2023) 107091

13

Fig. 13. The test accuracy of different methods in different noise environments in Case Two.

Y. Wang et al.

Engineering Applications of Artificial Intelligence 126 (2023) 107091

14

Fig. 14. Confusion matrix for each model in a noisy environment with SNR = 10 and SNR = 4.

Y. Wang et al.

Engineering Applications of Artificial Intelligence 126 (2023) 107091

15

distributions are identical. This further indicates that the structural re-
parameterization does not affect the final feature extraction ability of
the model. The DRSN in Fig. 15 shows a small amount of stacking of
samples at both SNR = 10 and SNR = 4, indicating its superior feature
extraction ability in noisy environments.

4.4. Model parameter analysis

In addition to evaluating the capability of the models in classification
accuracy and feature extraction ability on the specific task, it is also
necessary to assess their network complexity. Such parameters of the
models are of great significance for considering the utility of the models
in edge computing scenarios. Specifically, the following parameters of
different models are compared.

A. Params: The total number of parameters to be trained in the model
training. It is used to measure the size of the model and to calculate
the space complexity.

B. Memory: The amount of memory required for model inference.
C. Floating Point Operations (FLOPs): The theoretical amount of

floating point arithmetics is the amount of computation in the neural
network.

D. Inference time: Inference time of a single sample in the edge-end
device.

Table 4 presents the Params, Memory, Flops parameters, and average
inference time per single sample for each mode. The statistics for Par-
ams, Memory, and Flops parameters were calculated using torchstat (A
lightweight neural network analyzer based on PyTorch). The inference
times were measured on the NVIDIA Jetson Xavier NX suite for the test
dataset in Case 1. To exclude the effect of the code writing style on the
inference time, To exclude the influence of the code writing style on the
inference time, the model’s computing time in the GPU is monitored via
CUDA Event. Meanwhile, the GPU is warmed up with equal intensity
before each speed measurement. Fig. 16 illustrates these results.

Compared with SrepCNN, the params of MFCC-SrepCNN are the

same as 4,359,557, but the Memory and Flops are decreased by 32.05%
and 30.32%, respectively, which indicates that MFCC does not change
the total number of parameters of the network, and the size of MFCC
feature matrix is reduced compared with the original samples, which
reduces the size of individual samples input to SrepCNN, which in turn
reduces the amount of computation, resulting in less Memory for the
MFCC-SrepCNN.

Compared with MFCC-SrepCNN-T, the Params, Memory, and Flops
of MFCC-SrepCNN decreased by 26.67%, 52.51%, and 10.44%,
respectively, indicating that the structural re-parameterization changed
the network from multi-branch to single-way, which reduced the total
number of FLOPs and parameters of the neural network, which in turn
led to less Memory.

Meanwhile, the relevant network parameters of MFCC-SrepCNN are
all significantly smaller than those of Resnet and Xception, indicating
that the MFCC-SrepCNN model is less complex, easier to train, and has
less hardware overhead at runtime. Although according to the previous
paper, DRSN can be more stable in fault diagnosis accuracy under noisy
environments, the Memory and Flops of this network are 20.24 MB and
1.71 GFlops, respectively, resulting in the large hardware overhead even
when performing inference operations, and thus is not suitable for
lightweight deployment in harsh environments full of disturbances.

The convolution kernels of MFCC-SrepCNN models are all 3*3 conv,

Fig. 15. t-SNE for each model in a noisy environment with SNR = 10 and SNR = 4.

Table 4
Test results of the complexity of each model.

Methods Params Memory
(MB)

Flops
(MFlops)

Inference time
(ms)

Resnet 21,300,869 2.96 275.79 27.72
Xception 20,818,061 9.59 338.62 22.19
DRSN 12,573,445 20.24 1710 18.43
SrepCNN 4,359,557 3.90 206.78 5.82
MFCC-

SrepCNN
4,359,557 2.65 144.09 9.45

MFCC-
SrepCNN-T

4,854,149 5.58 160.89 15.45

Y. Wang et al.

Engineering Applications of Artificial Intelligence 126 (2023) 107091

16

which can effectively improve the inference speed of the models on edge
devices, so the effect of structural re-parameterization on the inference
speed of the models is worth exploring. In three iterations of case one,
the GPU runtime of each sample for inference is recorded, and the mean
value was taken as the result of the test. Based on the results of 18 tests
for each model, a visual error histogram of the inference speed of a
single sample for different models was drawn. Analyzing Fig. 16 and
Tables 4, it can be seen that the inference speed of the MFCC-SrepCNN
model decreases from 15.45 ms to 9.45 ms than the MFCC-SrepCNN-T
model. Meanwhile, compared with Resnet, Xception, and DRSN
models, MFCC-SrepCNN has a significant advantage in model inference
speed. This indicates that structural re-parameterization can enhance
the inference speed of the method. Which can get the prediction results
faster on the edge device, and then assist the monitoring system of the
gearbox to make a timely response.

5. Conclusion

This study introduces a lightweight convolutional neural network-
based approach for gearbox fault diagnosis in edge computing sce-
narios. The proposed method extracts the MFCC feature matrix from
signals, effectively suppressing noise interference and improving diag-
nostic accuracy. To achieve improved inference speed and reduced
hardware overhead on edge computing devices, we apply the principle
of structural re-parameterization. By transforming the model from
multiple branches during training to a single branch for inference, while
maintaining its diagnostic capability. We conduct validation experi-
ments on a public dataset and a custom test device using the NVIDIA
Jetson Xavier NX suite as the edge computing platform. According to the
experiment, after extracting the MFCC feature matrix, the average
diagnostic accuracy rate in the noisy environment of the presented
methodology is improved by 12.22% and 9.44%, respectively. After
structural re-parameterization, the Memory of the model decreases by
52.58%, and the inference speed is increased by 38.83%. The results
demonstrate that our proposed methodology offers better fault diagnosis
capability, a smaller memory footprint, and faster inference speed in
noisy environments.

Although, the proposed method achieves good diagnostic results
while being lightweight. The experiments are conducted based on a

large amount of labeled data for model training and sufficient data for
various fault types, in the case study. And under the actual engineering
application, there will be missing data labels or data imbalance among
fault types. Therefore, we should investigate relevant semi-supervised or
self-supervised learning to resolve the above issues in future work. In
addition, the proposed method achieves lightweight in a way that can be
effective in a specific network structure. The method has some limita-
tions. Therefore, future work is expected to achieve a lightweight for
generic models (rather than a specific network structure), through
knowledge distillation, network pruning, etc.

Funding

This research has been partially supported by the National Key
Research and Development Program of China (under Grant,
2022YFC2204700); and the Fundamental Research Funds for the Cen-
tral Universities (under Grant YCJJ202201006).

CRediT authorship contribution statement

Yanzhi Wang: Conceptualization, Methodology, Software, Writing –
original draft. Jinhong Wu: Validation, Writing – review & editing.
Ziyang Yu: Investigation, Resources. Jiexiang Hu: Visualization, Data
curation. Qi Zhou: Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

References

Belongie, S., Wilber, M., Veit, A., 2016. Residual networks behave like ensembles of
relatively shallow networks. In: 30th Conference on Neural Information Processing
Systems (NIPS)Barcelona, SPAIN.

Fig. 16. Test results of the complexity of each model.

Y. Wang et al.

http://refhub.elsevier.com/S0952-1976(23)01275-7/sref1
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref1
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref1

Engineering Applications of Artificial Intelligence 126 (2023) 107091

17

Chen, J.L., Li, Z.P., Pan, J., Chen, G.G., Zi, Y.Y., Yuan, J., Chen, B.Q., He, Z.J., 2016.
Wavelet Transform Based on Inner Product in Fault Diagnosis of Rotating
Machinery: A Review, Mechanical Systems, and Signal Processing, pp. 1–35. https://
doi.org/10.1016/j.ymssp.2015.08.023, 70-71.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B.,
Shelhamer, E., 2014. Cudnn: Efficient Primitives for Deep Learning arXiv preprint
arXiv:1410.0759.

Chiang, M., Zhang, T., 2016. Fog and IoT: an overview of research opportunities. IEEE
Internet Things J. 3, 854–864. https://doi.org/10.1109/jiot.2016.2584538.

Chollet, F., 2017. Xception: deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1251–1258.

Dai, C., Liu, X., Li, Z., Chen, M.-Y., 2021. A tucker decomposition based knowledge
distillation for intelligent edge applications. Appl. Soft Comput. 101 https://doi.org/
10.1016/j.asoc.2020.107051.

Ding, X.H., Guo, Y.C., Ding, G.G., Han, J.G., 2019. Ieee, ACNet: strengthening the kernel
skeletons for powerful CNN via asymmetric convolution blocks. In: IEEE/CVF
International Conference on Computer Vision (ICCV)Seoul, SOUTH KOREA,
pp. 1911–1920.

Ding, X.H., Zhang, X.Y., Han, J.G., Ding, G.G., 2021a. S.O.C. Ieee comp, diverse branch
block: building a convolution as an inception-like unit. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR)Electr Network, pp. 10881–10890.

Ding, X.H., Zhang, X.Y., Ma, N.N., Han, J.G., Ding, G.G., Sun, J., 2021b. S.O.C. Ieee
comp, RepVGG: making VGG-style ConvNets great again. In: IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR)Electr Network,
pp. 13728–13737.

Errandonea, I., Ciáurriz, P., Alvarado, U., Beltrán, S., Arrizabalaga, S., 2023. Edge
intelligence-based proposal for onboard catenary stagger amplitude diagnosis.
Comput. Ind. 144 https://doi.org/10.1016/j.compind.2022.103781.

Gao, C., Rios-Navarro, A., Chen, X., Liu, S.C., Delbruck, T., 2020. EdgeDRNN: recurrent
neural network accelerator for edge inference. Ieee Journal on Emerging and
Selected Topics in Circuits and Systems 10, 419–432. https://doi.org/10.1109/
jetcas.2020.3040300.

Gill, S.S., Xu, M.X., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M.,
Stankovski, V., Wu, H.M., Abraham, A., Singh, M., Mehta, H., Ghosh, S.K., Baker, T.,
Parlikad, A.K., Lutfiyya, H., Kanhere, S.S., Sakellariou, R., Dustdar, S., Rana, O.,
Brandic, I., Uhlig, S., 2022. AI for next generation computing: emerging trends and
future directions. Internet of Things 19. https://doi.org/10.1016/j.iot.2022.100514.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778.

Hewa, T., Braeken, A., Liyanage, M., Ylianttila, M., 2022. Fog computing and blockchain-
based security service architecture for 5G industrial IoT-enabled cloud
manufacturing. IEEE Trans. Ind. Inf. 18, 7174–7185. https://doi.org/10.1109/
tii.2022.3140792.

Huang, Y., Qiao, X., Tang, J., Ren, P., Liu, L., Pu, C., Chen, J., 2023. An integrated cloud-
edge-device adaptive deep learning service for cross-platform web. IEEE Trans.
Mobile Comput. 22, 1950–1967. https://doi.org/10.1109/tmc.2021.3122279.

Huo, Z.Q., Martinez-Garcia, M., Zhang, Y., Shu, L., 2022. A multisensor information
fusion method for high-reliability fault diagnosis of rotating machinery. IEEE Trans.
Instrum. Meas. 71 https://doi.org/10.1109/tim.2021.3132051.

Huong, T.T., Bac, T.P., Long, D.M., Luong, T.D., Dan, N.M., Quang, L.A., Cong, L.T.,
Thang, B.D., Tran, K.P., 2021. Detecting cyberattacks using anomaly detection in
industrial control systems: a Federated Learning approach. Comput. Ind. 132
https://doi.org/10.1016/j.compind.2021.103509.

Jing, T., Tian, X., Hu, H., Ma, L., 2022. Deep learning-based cloud–edge collaboration
framework for remaining useful life prediction of machinery. IEEE Trans. Ind. Inf.
18, 7208–7218. https://doi.org/10.1109/tii.2021.3138510.

Khalil, R.A., Saeed, N., Masood, M., Fard, Y.M., Alouini, M.S., Al-Naffouri, T.Y., 2021.
Deep learning in the industrial internet of things: potentials, challenges, and
emerging applications. IEEE Internet Things J. 8, 11016–11040. https://doi.org/
10.1109/jiot.2021.3051414.

Kong, X.J., Wu, Y.H., Wang, H., Xia, F., 2022. Edge computing for internet of everything:
a survey. IEEE Internet Things J. 9, 23472–23485. https://doi.org/10.1109/
jiot.2022.3200431.

Kumar, A., Gandhi, C.P., Zhou, Y., Vashishtha, G., Kumar, R., Xiang, J., 2020. Improved
CNN for the diagnosis of engine defects of 2-wheeler vehicle using wavelet synchro-
squeezed transform (WSST). Knowl. Base Syst. 208 https://doi.org/10.1016/j.
knosys.2020.106453.

Kumar, A., Parkash, C., Vashishtha, G., Tang, H., Kundu, P., Xiang, J., 2022. State-space
modeling and novel entropy-based health indicator for dynamic degradation
monitoring of rolling element bearing. Reliab. Eng. Syst. Saf. 221 https://doi.org/
10.1016/j.ress.2022.108356.

Kumar, A., Vashishtha, G., Gandhi, C.P., Tang, H., Xiang, J., 2021. Tacho-less sparse CNN
to detect defects in rotor-bearing systems at varying speed. Eng. Appl. Artif. Intell.
104 https://doi.org/10.1016/j.engappai.2021.104401.

Lavin, A., Gray, S., 2016. Fast algorithms for convolutional neural networks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4013–4021.

Lei, Y.G., Lin, J., Zuo, M.J., He, Z.J., 2014. Condition monitoring and fault diagnosis of
planetary gearboxes: a review. Measurement 48, 292–305. https://doi.org/10.1016/
j.measurement.2013.11.012.

Li, G.Q., Wu, J., Deng, C., Chen, Z.Y., 2022. Parallel multi-fusion convolutional neural
networks based fault diagnosis of rotating machinery under noisy environments. ISA
Trans. 128, 545–555. https://doi.org/10.1016/j.isatra.2021.10.023.

Li, H.F., Hu, G.Z., Li, J.Q., Zhou, M.C., 2022. Intelligent Fault diagnosis for large-scale
rotating machines using binarized deep neural networks and random forests. IEEE
Trans. Autom. Sci. Eng. 19, 1109–1119. https://doi.org/10.1109/
tase.2020.3048056.

Liang, P., Wang, W., Yuan, X., Liu, S., Zhang, L., Cheng, Y., 2022. Intelligent fault
diagnosis of rolling bearing based on wavelet transform and improved ResNet under
noisy labels and environment. Eng. Appl. Artif. Intell. 115 https://doi.org/10.1016/
j.engappai.2022.105269.

McDonald, G.L., Zhao, Q., Zuo, M.J., 2012. Maximum correlated Kurtosis deconvolution
and application on gear tooth chip fault detection. Mech. Syst. Signal Process. 33,
237–255. https://doi.org/10.1016/j.ymssp.2012.06.010.

Qian, G., Lu, S., Pan, D., Tang, H., Liu, Y., Wang, Q., 2019. Edge computing: a promising
framework for real-time fault diagnosis and dynamic control of rotating machines
using multi-sensor data. IEEE Sensor. J. 19, 4211–4220. https://doi.org/10.1109/
jsen.2019.2899396.

Qizhao, W., Li, Q., Wang, K., Wang, H., Peng, Z., 2021. Efficient federated learning for
fault diagnosis in industrial cloud-edge computing, Computing. Archives for
Informatics and Numerical Computation 103, 2319–2337.

Ren, L., Jia, Z., Wang, T., Ma, Y., Wang, L., 2022. LM-CNN: a cloud-edge collaborative
method for adaptive fault diagnosis with label sampling space enlarging. IEEE Trans.
Ind. Inf. 18, 9057–9067. https://doi.org/10.1109/tii.2022.3180389.

Samie, F., Bauer, L., Henkel, J., 2019. From cloud down to things: an overview of
machine learning in internet of things. IEEE Internet Things J. 6, 4921–4934.
https://doi.org/10.1109/jiot.2019.2893866.

Shao, H., Xia, M., Han, G., Zhang, Y., Wan, J., 2021. Intelligent Fault diagnosis of rotor-
bearing system under varying working conditions with modified transfer
convolutional neural network and thermal images. IEEE Trans. Ind. Inf. 17,
3488–3496. https://doi.org/10.1109/tii.2020.3005965.

Shao, S.Y., McAleer, S., Yan, R.Q., Baldi, P., 2019. Highly accurate machine fault
diagnosis using deep transfer learning. IEEE Trans. Ind. Inf. 15, 2446–2455. https://
doi.org/10.1109/tii.2018.2864759.

Shi, W.S., Cao, J., Zhang, Q., Li, Y.H.Z., Xu, L.Y., 2016. Edge computing: vision and
challenges. IEEE Internet Things J. 3, 637–646. https://doi.org/10.1109/
jiot.2016.2579198.

Tang, X., Xu, Y., Sun, X., Liu, Y., Jia, Y., Gu, F., Ball, A.D., 2022. Intelligent fault
diagnosis of helical gearboxes with compressive sensing based non-contact
measurements. ISA Trans. https://doi.org/10.1016/j.isatra.2022.07.020.

Wang, H., Xu, J.W., Sun, C., Yan, R.Q., Chen, X.F., 2022. Intelligent Fault diagnosis for
planetary gearbox using time-frequency representation and deep reinforcement
learning. Ieee-Asme Transactions on Mechatronics 27, 985–998. https://doi.org/
10.1109/tmech.2021.3076775.

Wang, Y.R., Jin, Q., Sun, G.D., Sun, C.F., 2019. Planetary gearbox fault feature learning
using conditional variational neural networks under noise environment. Knowl. Base
Syst. 163, 438–449. https://doi.org/10.1016/j.knosys.2018.09.005.

Wu, P.L., Nie, X.Y., Xie, G., 2021. Multi-sensor signal fusion for a compound fault
diagnosis method with strong generalization and noise-tolerant performance. Meas.
Sci. Technol. 32 https://doi.org/10.1088/1361-6501/abc6e3.

Yan, H., Bai, H., Zhan, X., Wu, Z., Wen, L., Jia, X., 2022. Combination of vmd mapping
MFCC and lstm: a new acoustic fault diagnosis method of diesel engine. Sensors 22.
https://doi.org/10.3390/s22218325.

Yao, D., Liu, H., Yang, J., Li, X., 2020. A lightweight neural network with strong
robustness for bearing fault diagnosis. Measurement 159. https://doi.org/10.1016/j.
measurement.2020.107756.

Yu, F., Cui, L., Wang, P., Han, C., Huang, R., Huang, X., 2021. EasiEdge: a novel global
deep neural networks pruning method for efficient edge computing. IEEE Internet
Things J. 8, 1259–1271. https://doi.org/10.1109/jiot.2020.3034925.

Yu, X.L., Yang, Y., He, Q.B., Du, M.G., Peng, Z.K., 2022. Multiple frequency modulation
components detection and decomposition for rotary machine fault diagnosis. IEEE
Trans. Instrum. Meas. 71 https://doi.org/10.1109/tim.2021.3134334.

Zeng, Y.L., Song, C.Y., Ge, T.J., Zhang, Y., 2022. Reduction of large-scale graphs:
effective edge shedding at a controllable ratio under resource constraints. Knowl.
Base Syst. 240 https://doi.org/10.1016/j.knosys.2022.108126.

Zhang, K.L., Huang, W., Hou, X.Y., Xu, J.H., Su, R.D., Xu, H.Y., 2021. a fault diagnosis
and visualization method for high-speed train based on edge and cloud
collaboration. Applied Sciences-Basel 11. https://doi.org/10.3390/app11031251.

Zhang, L., Fan, Q., Lin, J., Zhang, Z., Yan, X., Li, C., 2023. A nearly end-to-end deep
learning approach to fault diagnosis of wind turbine gearboxes under nonstationary
conditions. Eng. Appl. Artif. Intell. 119 https://doi.org/10.1016/j.
engappai.2022.105735.

Zhang, Z.Z., Li, S.M., Wang, J.R., Xin, Y., An, Z.H., Jiang, X.X., 2020. Enhanced sparse
filtering with strong noise adaptability and its application on rotating machinery
fault diagnosis. Neurocomputing 398, 31–44. https://doi.org/10.1016/j.
neucom.2020.02.042.

Zhao, M., Zhong, S., Fu, X., Tang, B., Pecht, M., 2019. Deep residual shrinkage networks
for fault diagnosis. IEEE Trans. Ind. Inf. 16, 4681–4690.

Zhao, Y., Yin, Y., Gui, G., 2020. Lightweight deep learning based intelligent edge
surveillance techniques. Ieee Transactions on Cognitive Communications and
Networking 6, 1146–1154. https://doi.org/10.1109/tccn.2020.2999479.

Y. Wang et al.

https://doi.org/10.1016/j.ymssp.2015.08.023
https://doi.org/10.1016/j.ymssp.2015.08.023
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref3
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref3
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref3
https://doi.org/10.1109/jiot.2016.2584538
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref5
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref5
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref5
https://doi.org/10.1016/j.asoc.2020.107051
https://doi.org/10.1016/j.asoc.2020.107051
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref7
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref7
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref7
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref7
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref8
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref8
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref8
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref9
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref9
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref9
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref9
https://doi.org/10.1016/j.compind.2022.103781
https://doi.org/10.1109/jetcas.2020.3040300
https://doi.org/10.1109/jetcas.2020.3040300
https://doi.org/10.1016/j.iot.2022.100514
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref13
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref13
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref13
https://doi.org/10.1109/tii.2022.3140792
https://doi.org/10.1109/tii.2022.3140792
https://doi.org/10.1109/tmc.2021.3122279
https://doi.org/10.1109/tim.2021.3132051
https://doi.org/10.1016/j.compind.2021.103509
https://doi.org/10.1109/tii.2021.3138510
https://doi.org/10.1109/jiot.2021.3051414
https://doi.org/10.1109/jiot.2021.3051414
https://doi.org/10.1109/jiot.2022.3200431
https://doi.org/10.1109/jiot.2022.3200431
https://doi.org/10.1016/j.knosys.2020.106453
https://doi.org/10.1016/j.knosys.2020.106453
https://doi.org/10.1016/j.ress.2022.108356
https://doi.org/10.1016/j.ress.2022.108356
https://doi.org/10.1016/j.engappai.2021.104401
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref24
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref24
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref24
https://doi.org/10.1016/j.measurement.2013.11.012
https://doi.org/10.1016/j.measurement.2013.11.012
https://doi.org/10.1016/j.isatra.2021.10.023
https://doi.org/10.1109/tase.2020.3048056
https://doi.org/10.1109/tase.2020.3048056
https://doi.org/10.1016/j.engappai.2022.105269
https://doi.org/10.1016/j.engappai.2022.105269
https://doi.org/10.1016/j.ymssp.2012.06.010
https://doi.org/10.1109/jsen.2019.2899396
https://doi.org/10.1109/jsen.2019.2899396
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref31
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref31
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref31
https://doi.org/10.1109/tii.2022.3180389
https://doi.org/10.1109/jiot.2019.2893866
https://doi.org/10.1109/tii.2020.3005965
https://doi.org/10.1109/tii.2018.2864759
https://doi.org/10.1109/tii.2018.2864759
https://doi.org/10.1109/jiot.2016.2579198
https://doi.org/10.1109/jiot.2016.2579198
https://doi.org/10.1016/j.isatra.2022.07.020
https://doi.org/10.1109/tmech.2021.3076775
https://doi.org/10.1109/tmech.2021.3076775
https://doi.org/10.1016/j.knosys.2018.09.005
https://doi.org/10.1088/1361-6501/abc6e3
https://doi.org/10.3390/s22218325
https://doi.org/10.1016/j.measurement.2020.107756
https://doi.org/10.1016/j.measurement.2020.107756
https://doi.org/10.1109/jiot.2020.3034925
https://doi.org/10.1109/tim.2021.3134334
https://doi.org/10.1016/j.knosys.2022.108126
https://doi.org/10.3390/app11031251
https://doi.org/10.1016/j.engappai.2022.105735
https://doi.org/10.1016/j.engappai.2022.105735
https://doi.org/10.1016/j.neucom.2020.02.042
https://doi.org/10.1016/j.neucom.2020.02.042
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref49
http://refhub.elsevier.com/S0952-1976(23)01275-7/sref49
https://doi.org/10.1109/tccn.2020.2999479

	A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios
	1 Introduction
	2 Related works
	2.1 Edge computing-based fault diagnosis
	2.2 Lightweight neural network
	2.3 Mel-Frequency Cepstral Coefficients feature

	3 Proposed method
	3.1 Edge computing-based fault diagnosis method for gearboxes
	3.2 MFCC feature matrix construction
	3.3 Structural Re-parameterized convolutional neural network
	3.3.1 Network architecture
	3.3.2 Implementation of structural re-parameterization

	4 Case studies
	4.1 Experimental method
	4.2 Case one
	4.2.1 Experimental data description
	4.2.2 Results & discussion

	4.3 Case two
	4.3.1 Experimental data description
	4.3.2 Results & discussion

	4.4 Model parameter analysis

	5 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

