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Abstract
Machine learning is employed for solving physical systems governed by general nonlinear partial differential equations 
(PDEs). However, complex multi-physics systems such as acoustic-structure coupling are often described by a series of 
PDEs that incorporate variable physical quantities, which are referred to as parametric systems. There are lack of strategies 
for solving parametric systems governed by PDEs that involve explicit and implicit quantities. In this paper, a deep learning-
based Multi Physics-Informed PointNet (MPIPN) is proposed for solving parametric acoustic-structure systems. First, the 
MPIPN introduces an enhanced point-cloud architecture that encompasses explicit physical quantities and geometric features 
of computational domains. Then, the MPIPN extracts local and global features of the reconstructed point-cloud as parts of 
solving criteria of parametric systems, respectively. Besides, implicit physical quantities are embedded by encoding tech-
niques as another part of solving criteria. Finally, all solving criteria that characterize parametric systems are amalgamated 
to form distinctive sequences as the input of the MPIPN, whose outputs are solutions of systems. The proposed framework 
is trained by adaptive physics-informed loss functions for corresponding computational domains. The framework is general-
ized to deal with new parametric conditions of systems. The effectiveness of the MPIPN is validated by applying it to solve 
steady parametric acoustic-structure coupling systems governed by the Helmholtz equations. An ablation experiment has 
been implemented to demonstrate the efficacy of physics-informed impact with a minority of supervised data. The proposed 
method yields reasonable precision across all computational domains under constant parametric conditions and changeable 
combinations of parametric conditions for acoustic-structure systems.

Keywords Physics-informed deep learning · Parametric physical systems · Partial differential equations · Point-cloud 
neural networks · Acoustic-structure systems

1 Introduction

Acoustic-structure systems are classic and vital multi-phys-
ics systems that can be abstracted from various engineer-
ing scenarios such as acoustic focusing [1], sonar cloak-
ing [2], and sound absorption [3]. Mastering the physical 
performance of acoustic-structure systems is fundamental 
to acoustic structure design. Modeling and forecasting 
the dynamics of multi-physics systems remains an open 
scientific problem [4]. Solving parametric multi-physics 
systems from the mechanism necessitates designing a gen-
eral framework that can identify and solve components of 

systems governed by corresponding governing equations. 
Commonly, the governing equations for the dynamics of 
physical systems are PDEs [5]. Deep learning methods, 
especially the neural network architecture have become a 
hotspot because of their ability in high-dimensional nonlin-
ear mapping and automatic extraction of features. In the field 
of PDE solving, deep learning methods of physics-informed 
models were first used by Raissi et al. [6] to solve both linear 
and nonlinear PDEs in forward and inverse forms. It now 
has been broadly used to deal with various physical issues 
such as heat transfer [7], mechanics [8], and fluid dynamics 
[9]. For physics-informed methods, physical information is 
embedded in three pathways [10] separately or in tandem 
to accelerate training and enhance generalization. First, 
the utilization of variable fidelities observations that pro-
vide monitor data across the physical spatial and temporal 
field as supervised regime [11]. Wu et al. [12] constructed 
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a multi-fidelity neural network to predict the acoustic pres-
sure through data of multiple precision. Second, special-
ized architectures of neural networks are designed to embed 
the priori physical knowledge into the architecture itself. 
PointNet [13] extracts both local and global depth of field 
information to realize segmentation tasks. Kashefi et al. [14] 
designed a framework based on PointNet [13] to solve fluid 
flow fields on irregular geometries. Lagaris [15] proposed 
a systematic construction of neural networks to satisfy the 
initial boundary conditions and interface conditions of dif-
ferential equations. Gao et al. [16] constructed a deep auto-
encoder network to predict the peak points and directed the 
design of the Helmholtz resonator. Wang et al. [17] and Liu 
et al. [18] encoded multiple scale features to solve oscilla-
tory stokes flows and Poisson–Boltzmann equations. Third, 
imposing physical constraints into the training process such 
as penalizing the residual of governing equations in loss 
function [6]. These aim to incorporate any domain-based 
physical knowledge into machine learning models in a flex-
ible manner [19]. More related work can be seen in Refs.
[20–22].

Furthermore, dedicating to constant computational con-
ditions is insufficient to fully characterize performances of 
parametric physical systems [23]. Taking the parametric 
acoustic-structure systems as examples, changeable physical 
quantities including frequency, modulus and density affect 
solutions of governing PDEs. To broaden the applications 
of deep learning methods modeling parametric physical sys-
tems, there is a need for advanced solvers tailored for para-
metric PDEs that govern those physical systems. Im et al. 
[24, 25] used evolutionary processes to randomly generate 
diverse PDEs based on priori data of a multi-physics system. 
Berner et al. [26] solved numerical solutions of the paramet-
ric families of high-dimensional linear Kolmogorov PDEs 
by transforming multiple PDEs of interest to a single statisti-
cal learning problem. Chen et al. [27] used meta-learning to 
solve the parametric PDEs as a multi-task learning problem 
and guaranteed convergence for Poisson's equation. Isogeo-
metric neural networks [28] are proposed to combine the 
solutions of PDEs with physical domains as linear Isogeo-
metric representation and approximate based on domain 
features. PhyGeoNet [29] used CNN architecture by elliptic 
coordinate mapping from the irregular physical domain and 
regular reference domain. Kashefi et al. [30] proposed PIPN 
to solve the PDEs on multiple computational domains with 
irregular geometries. Operator learning methods were first 
introduced by DeepONet [31–33], which consists of two net-
works. The branch network deals with input function, while 
the truck network connects the output function at selected 
observation points. Li et al. [34] mapped families of Burgers' 
equation, Darcy flow, and Navier–Stokes equation into the 
frequency domain space to impose constraints by param-
eterizing the Fourier operator to embed in neural networks. 

Wavelet Neural Operator [35] further generalizes the neural 
operator by inducing spectral decomposition-based operator. 
In summary, physics-informed PDE solvers aim to come up 
with fast prediction mechanisms that are embedded with the 
physical priori knowledge to solve PDEs of interest.

However, mechanisms in the aforementioned cited work 
are characterized by three unresolved issues. First, data-
driven methods derive the solutions of systems by being 
trained with massive observation data that are extensively 
designed manually [23–26, 31–33]. This requires generating 
labeled data coming at a strenuous consumption of time and 
it ignores the interrelated mathematical and spatial infor-
mation. Once the model is trained under a constant para-
metric condition, it is unable to fit in with new parametric 
conditions of systems. Second, in certain methods [27–30], 
parametric conditions are encoded as the input sequence to 
differentiate the parametric systems. On the one hand, the 
discretization of systems is elusive to be captured. On the 
other hand, the interrelated correlations between paramet-
ric conditions and computational domains fail to be repre-
sented. Therefore, models are incapable of simultaneously 
identifying parametric conditions and spatial coordinates 
in parametric systems that contain multiple computational 
domains. Third, the above-cited methods process one sin-
gle PDE for each training due to its limitation in extracting 
the spatial information of discrete points, which is insuffi-
cient for PDEs series governing the multi-physics systems. 
In the parametric acoustic-structure systems, combinations 
of diverse physical quantities and multiple computational 
domains make these three problems inevitable.

To address the aforementioned issues, we propose a Multi 
Physics-informed PointNet architecture, referred to as the 
MPIPN, to solve parametric acoustic-structure systems. The 
parametric systems include explicit physical quantities that 
are directly formulated in the governing PDEs and implicit 
quantities that indirectly affect the solutions. The combina-
tions of these quantities form the parametric conditions of 
systems. Based on point-cloud architecture, the MPIPN deals 
with overall parametric conditions, and calculates pointwise 
solutions of governing PDEs for systems. The MPIPN is 
trained for each computational domain in systems through 
the compositions of corresponding governing PDEs and a 
minority of observation solutions as weakly supervised. The 
MPIPN uses the least amount of priori observation data and 
captures the correlation between physical quantities and spa-
tial coordinates. The proposed method is utilized to solve the 
steady parametric acoustic-structure systems [36] governed 
by the Helmholtz equations. Two discrete acoustic-structure 
systems generate three numerical cases to test the efficiency 
of the MPIPN. The finite element and boundary element 
(FE-BE) method is executed to provide the ground truth as 
an assessment of the predicted solutions generated by the 
MPIPN. While during the testing process of the MPIPN, 
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results of FE-BE simulation are no longer used. The salient 
contributions of this paper are as follows:

1. The MPIPN utilizes enhanced point-cloud architecture 
to directly compute the Helmholtz equations at discrete 
points and learns the correlations of spatial coordinates. 
It circumvents the necessity of massive manually design-
ing supervised learning. Indeed, less than 3% of total 
discrete points are required for observation solutions 
while training to reasonable accuracy.

2. The MPIPN preserves the constitutive mathematical 
information of acoustic-structure systems by construct-
ing physics-informed loss function to calculate the val-
ues of parametric PDEs directly by the neural networks. 
Every computational domain in the system can be sepa-
rately identified and solved. This ensures the scalabil-
ity of the model to new parametric conditions without 
inducing extra labeled data.

3. The MPIPN embeds and fuses explicit and implicit para-
metric conditions with spatial coordinates of multiple 
computational domains. The correlation of parametric 
conditions and spatial features can be simultaneously 
extracted to identify a series of parametric PDEs gov-
erning different domains in acoustic-structure systems. 
Multiple computational conditions can be identified and 
integrated to solve.

The rest of this paper is organized as follows: The back-
ground of PDEs for parametric physical systems and point-
cloud-based architecture for PDE solvers are discussed in 
Sect. 2. In Sect. 3, we introduce the methodology of the 
proposed framework MPIPN, including its architecture and 
adaptive physics-informed loss function. In Sect. 4, numer-
ical experiments of acoustic-structure systems are imple-
mented by applying the MPIPN to test its effectiveness in 
solving the governing PDEs. Three cases including constant 
explicit and implicit conditions and changeable combina-
tions of physical conditions are executed as validation as 
well as the ablation experiment. Finally. Section 5 discusses 
the conclusions and future works of MPIPN.

2  Background

2.1  PDEs of parametric systems

Real-world physical effects can be abstracted into different 
multi-physics systems. Solving physical systems is solving 
corresponding governing equations at essence. In physi-
cal systems, PDEs can describe a wide range of physical 
phenomena and dynamics, including heat transfer, convec-
tion–diffusion processes, fluid dynamics, etc. A multi-phys-
ics system is usually composed of several types of physical 

fields and coupling relationships, including fluid–structure 
coupling, thermo-structure coupling, acoustic-structure cou-
pling, etc. In such multi-physics systems, there are multiple 
computational domains with independent governing PDEs. 
This can be mathematically represented as

where S(⋅) denotes the governing PDEs for the system, u(t, �) 
is the solution, and Di(⋅) is the governing equations for the 
i th computational domain.

For a certain computational domain in physical systems, 
changeable systematic parameters cannot be characterized 
by a single fixed PDE. Parametric PDE is a series of PDEs 
that govern a certain computational domain with variable 
parameters. A general form of time-dependent governing 
parametric PDE can be written as

where f (t, �) is the source term of PDE, x = (x1, x2,… , xn) 
is spatial vector, and Ω is the computational domain of spa-
tial vectors. F(⋅) means nonlinear parametric mapping of 
governing equations. Since the system is time-dependent, a 
general form of initial condition can be written as

where g(�) is the source term of the initial condition PDE 
and G(⋅) is the nonlinear parametric mapping of the initial 
condition. Meanwhile, the boundary condition for time-
dependent PDE can be written as

where h(t, �) is the source term of boundary condition PDE, 
�Ω denotes the boundary of computational domain, and H(⋅) 
is the nonlinear parametric mapping of boundary condition. 
It should be noted that the nonlinear parametric mappings 
F(⋅) , G(⋅) and H(⋅) contain physical quantities that remain 
variables in the computation process, from which all dif-
ferential terms are subjected to the parametric PDEs family. 
For a computational domain with variable physical quan-
tities, the parametric PDE family can characterize it as a 
collection. Some of the quantities exist as variables in the 
governing PDEs for the system, while others exist in the 
associated equations of the system other than directly in the 
governing equations. For example, the mapping function of 
three-dimensional non-source heat equation can be written 
as

(1)
S[(u(t, �))] =

{
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where � is the thermal diffusivity that exists as a variable 
in the governing PDE. Therefore, the mapping function 
F[u(t, �)] represents the PDE family of the three-dimensional 
non-source heat equation. In this paper, we solve the two-
dimensional steady parametric acoustic-structure systems 
governed by parametric Helmholtz equations that contain 
both explicit and implicit physical quantities.

2.2  Point‑cloud architecture

In this paper, point-cloud data is used to represent the spa-
tial state of acoustic-structure systems. Point-cloud data is 
widely used in segmentation tasks. The common point-cloud 
is constructed with spatial coordinates of the target multi-
dimensional domain. Taking PointNet [13] for example, it 
utilizes the spatial information of point-cloud, and extracts 
local and global features to segment the images. The archi-
tecture of PointNet is shown in Fig. 1. Specifically, the num-
ber of points that constitute point-cloud is N , dinput , doutput 
represents the input and output dimensions, respectively. 
Dimensions of hidden layers in PointNet are denoted as 
Nlocal , N1 , N1 and Nglobal . When being applied to solve PDEs, 
by mapping the input of point-cloud to the output as the 
solutions under the constraints of PDE, PointNet can capture 
geometric features of the computational domains. The input 
is coordinates of the point-cloud and the output is the solu-
tions of each point in PDE. Therefore, PointNet can process 
changeable geometries of computational domains. Under the 
circumstance that different computational domains obey the 
same PDE with constant parametric conditions, the networks 
are first trained on a set of irregular geometries of computa-
tional domains Φ =

{
Vi

}m

i=1
 . Then, the well-trained model 

is used for an unseen set of irregular geometries of compu-
tational domains Ψ =

{
Vi

}l

i=1
.

There are three advantages that point-cloud architecture 
can provide. First, based on spatial discretization, point-
cloud data can be extracted from vertices of structured or 
unstructured grids of the computational domains. The input 

(5)F[u(t, �)] = ut − �
(
uxx + uyy + uzz

)
, of networks are sets of discretized spatial coordinates that 

explicitly represent the initial computational domains. This 
realizes computing the derivative terms on each point in 
PDEs directly concerning the predicted solutions. Hence, 
we can judge and measure how well the current solution 
satisfies the PDEs. This is fundamental to the unsupervised 
or weakly supervised learning of physics-informed machine 
learning, since the priori solutions are not completely 
known. Second, the spatial information of coordinates can 
represent irregular geometries and describe computational 
domains. Unlike CNN which utilizes pixel data, the point-
cloud data is suitable to be transformed in spatial dimension. 
The formation of the computational domain is determined 
by the spatial properties of the point-cloud, avoiding binary 
one-hot encoding. Third, the governing PDEs of the compu-
tational domain are trainable under the point-cloud architec-
ture. A fixed PDE can be explicitly computed concerning the 
point-cloud as a loss function for the training of the neural 
networks.

3  Methodology

3.1  Architecture of MPIPN

Our goal is to train the framework over the training dataset Γ 
and use the well-trained model to solve new parametric con-
ditions in the testing dataset Λ . The Γ consists of the prior 
knowledge of the systems, while the Λ contains points to 
be solved and parametric conditions. Specifically, the prior 
knowledge consists of four types of physical information 
to identify different computational domains and parametric 
conditions of the systems. First, the spatial point-cloud is 
extracted from discrete physical systems. Point-cloud rep-
resents geometric information and is fundamental to gradi-
ent-based computation. The mapping between the discrete 
point-cloud and the physical field numerically forms the 
solutions of the systems. Second, there are physical quanti-
ties that remain variables within the governing PDEs of the 
system, i.e., frequency, temperature, density and time series. 
Changeable combinations of physical quantities constitute 

Fig. 1  PointNet architecture for PDE solving
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parametric conditions for systems. These quantities directly 
or indirectly influence the solutions of PDEs. Therefore, 
physical quantities that appear directly in the PDEs are 
referred to as explicit quantities or explicit conditions. 
Physical quantities that cannot be explicitly expressed in the 
PDEs, but affect the solutions of the systems, are termed 
implicit quantities or implicit conditions. Third, the gov-
erning PDEs for corresponding computational domains of 
the systems. For a multi-physics system, each computational 
domain satisfies a particular PDE. Therefore, the constraints 
of the governing PDEs are supervised guidelines as the 
physics-informed information for training the framework. 
Fourth, the priori exact solutions as the observation values 
that rectify the predicted solutions to avoid the degenerate 
solutions. This is either detected by engineering sensors or 

provided by mathematically known solutions. Observation 
solutions should be randomly or naturally selected without 
deliberate design. For the testing dataset Λ , the former three 
types of physical information are included, while the priori 
solutions are prohibited when being used to solve unseen 
parametric conditions. The Λ provides spatial, explicit and 
implicit physical quantities as input of the MPIPN and over-
all pointwise solutions of the systems are obtained as output. 
The overarching framework of the proposed is illustrated in 
Fig. 2, and details of substructures are shown in Fig. 3.

In general, the MPIPN receives spatial coordinates of 
the point-cloud and stacks with explicit physical quantities 
to obtain reconstructed point-cloud through the Quantities 
Stacking module. Then, Local Point Extractor and Global 
Point Extractor networks step-wisely extract the interrelated 

Fig. 2  Multi physics-informed PointNet architecture with four modules

Fig. 3  Details of substructures in the MPIPN: (a) dimensionally quantities stacking; (b) feature transform method; (c) matrix-MLP structure
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features of the spatial coordinates and explicit physical quan-
tities derived from stacked point-cloud. Thus, we obtain the 
local features sequence and global features sequence, respec-
tively. Afterward, the implicit physical quantities are encoded 
as parametric features to form solving criteria with local and 
global feature sequences for the parametric PDEs on each dis-
crete point. Finally, the Criteria Solver networks take solving 
criteria sequences as input and output pointwise solutions. The 
training of the architecture requires one-time gradient back-
propagation for each iteration to update overall parameters of 
the neural networks.

The Quantities Stacking module is the first step of the 
framework. Based on the FE-BE method, the systems can 
be arbitrarily discretized. Therefore, spatial point-cloud can 
be extracted from the vertices of the meshes. We denote 
point-cloud as X =

{
xi
}N

i=1
∈ ℝ

di and explicit quantities as 
Q =

{
qi
}N

i=1
∈ ℝ

dq in the Γ , where N =
{
Ni

}ndomain

i=1
 indicates 

the total number of points for each computational domain, 
ndomain denotes the number of computational domains within 
the systems, di indicates the dimension of the initial spa-
tial point-cloud. Figure 3a shows the Quantities Stacking 
module, through which, the initial spatial point-cloud and 
explicit quantities can be fused mathematically as

where the reconstructed point-cloud X∗ =
{
x∗
i

}N

i=1
∈ ℝ

di+dq 
is stacked dimensionally and contains pointwise spatial and 
explicit physical information.

The Local Point Extractor and Global Point Extractor 
both extract the features of the stacked point-cloud to capture 
the interrelation of the spatial and explicit quantities. Due to 
different sizes of receptive fields, global features represent 
the overall geometric characteristics and identify computa-
tional domains, while local features represent spatial correla-
tion and depict gradient information in a small range. The 
two extraction networks generate features of local and global 
scales by using Feature Transform and Matrix-MLP struc-
tures. Figure 3b, c show the Feature Transform method and 
Matrix-MLP structure, respectively. In the Feature Trans-
form method, the T-Net is realized by the composition of 
one-dimensional convolution and fully connected layers. 
Suppose that there are Ni points in a reconstructed point-
cloud with dimension of m on the i th computational domain. 
The input 

(
Ni × m

)
 is mapped by the T-Net to the transform 

matrix (m × m) . Through the Matrix Multiply, we obtain (
Ni × m

)∗ as the result of the matrix dot product of the input 
and transform matrix. This procedure can be expressed as

where, F(⋅) denotes the overall mapping of Feature Trans-
form (m × m) , T(⋅) denotes the mapping of T-Net to a matrix 

(6)x∗
i
=
{
xi ∈ ℝ

di ⊕ qi ∈ ℝ
dq
}
∈ ℝ

di+dq ,

(7)
(
Ni × m

)∗
= F

(
Ni × m

)
=
(
Ni × m

)
⊙ T

(
Ni × m

)
m×m

,

in the shape of m × m , ⊙ represents matrix dot product. In 
Matrix-MLP structure noted as ndomain ×

(
m1,m2

)
 , the input (

Ni × m1

)
 on the i th computational domain with dimension 

of m1 is scanned by number of m2 shared kernel of shape 
1 × 1 × m1 , and generates output 

(
Ni × m2

)
 . This can be 

mathematically expressed as

where M(⋅) denotes the overall mapping of Matrix-MLP, 
� denotes the j th dimension sequence of output with the 
shape of Ni × 1 , kl denotes the l th element of the j th ker-
nel, Il denotes the l th dimension sequence of input with the 
shape of Ni × 1 , and Mish(⋅) represents the Mish activation 
function [37]. The non-monotonic property of Mish causes 
small negative inputs to be preserved as negative and the 
order of continuity to be infinite. The Mish activation func-
tion can be written as

where tanh (⋅) is an activation function that can be written as

The Feature Transform method achieves the transformation 
alignment, ensuring the point-cloud is robust in geometrical 
configuration. While, the Matrix-MLP structure extracts the 
features of the point-cloud automatically. Through the above 
two methods, local features sequence SL can be obtained as

The sequence is obtained by several connected blocks 
consisting of the Feature Transform and Matrix-MLP. The 
Global Point Extractor decodes the global features from the 
local features by utilizing permutation invariant function, max-
pool. The global features sequence SG can be mathematically 
derived as

where m3 denotes the number of global features, and xj
Ni

 rep-
resents the j th feature of input sequence on the i th compu-
tational domain. Therefore, physical features are obtained as 
local features sequence SL and global features sequence SG 
by features extraction of various scales with the constructed 
point-cloud as input.

(8){�}
m2

j=1
= M

(
{�}

m1

l=1

)
= Mish

(
m1∑

l=1

{
kl
}m2

j=1
⋅ �l

)
,

(9)�(x) = x ⋅ tanh (ln (1 + ex)),

(10)tanh (z) =
ez − e−z

ez + e−z
.

(11)SL = M
(
F
(
x∗
i

))
.

(12)

SG = max
j

(
x
j

Ni

)
, with i = 1,⋯ , ndomain; j = 1,⋯ ,m3,
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For those implicit parametric conditions, they are separately 
encoded by auto-encoder or statistically as parametric features 
sequence SP as

where Q∗ =
{
q∗
i

}N

i=1
∈ ℝ

d∗
q denotes the implicit physical 

quantities, g(⋅) denotes the priori correlation of different 
implicit quantities, and E(⋅) denotes the selected encoder 
mapping method. Finally, the solving criteria of parametric 
systems can be expressed as the concatenating of the above 
three sequences: N ×

(
SP, SL, SG

)
 . Predicted solutions 

Y =
{
yj
}N

j=1
∈ ℝ

ds are mapped nonlinearly by the solving 
criteria as

where Ci(⋅) denotes the i th mapping from the solving criteria 
for individual computational domains to the solutions in the 
solver. Based on the corresponding solving criteria, paramet-
ric physical systems with multiple quantities can be solved.

3.2  Adaptive physics‑informed loss function

In MPIPN, the mapping neural networks and encoder are 
trained simultaneously by PyTorch automatic gradient com-
putation mechanism. All mapping functions including F(⋅) , 
T(⋅) , M(⋅) , and E(⋅) are trained by compositing the residuals 
of the governing PDEs and residuals of the predicted solu-
tions with priori exact solutions at the observation points. 
Since the physical systems are discretized by the FE-BE 
method and the vertices of meshes are extracted, the values 
of the PDEs can be directly calculated. To solve the PDEs 
corresponding to multiple computational domains, the cal-
culated values of the equations by predicted solutions on 
each domain should satisfy the equilibrium of the PDEs. 
This offers the inspiration of physics-informed loss function 
LPDE for arbitrary computational domains as

where F(⋅) is the function that represents the general PDE, 
NP denotes the number of points in the computational 
domain, xn denotes the variable quantities and ũ denotes the 
predicted solutions on the i th computational domain, ‖⋅‖

�
 

denotes the L norms. In the MPIPN, we add observation 
solutions term to the physics-informed loss function. On the 
one hand, degenerate solutions can be prohibited by setting 
constraints on priori exact solutions to rectify the updat-
ing of neural networks. On the other hand, any pre-known 
priori solution without computation can be added through 
the observation term to the loss function and thus promote 

(13)SP = E
(
q∗
i
, g
(
q∗
i

))
, with q∗

i
∈ ℝ

d∗
q ,

(14)Yi = Ci

(
Ni ×

(
SP, SL, SG

)
i

)
, i = 1, 2, ..., ndomain

(15)

PDE = 1
NP

NP
∑

i=1

‖

‖

‖

‖

‖

‖

F

(

x1, x2,… , xn , ũ,
�ũ
�x1

,… �ũ
�xn

, �2 ũ
�x1�x2

… , �� ũ
�x�1 �x�22 ...�x�nn

)

i

‖

‖

‖

‖

‖

‖�

,

accuracy. By constructing the mean squared errors of the 
priori observation solutions, the observation loss function 
LOBS can be written as

where No denotes the number of observation solutions, u 
denotes the ground true solutions and ‖⋅‖

�
 is the L2 norm. It 

should be noted that LPDE and LOBS can be adaptively com-
bined to generate suitable loss functions for multi-physics 
systems. Indeed, residuals of physics-informed loss func-
tion LPDE and observation loss function LOBS may be out 
of scale during the training process. To avoid the incon-
sistency of the scales between the two components of the 
loss function, an adaptive physics-informed loss function 
is proposed here. We first assigned a weight to each loss 
function component to balance all components to the same 
scale, and second to sum up balanced components to obtain 
the adaptive weighted loss function. The form of adaptive 
physics-informed loss function for an arbitrary domain can 
be mathematically written as

where LPDE indicates arbitrary loss function of discrete 
PDEs, LOBS indicates the observation loss function term, 
� and � are corresponding learnable coefficients for each 
component. Here we fix � = 1 and � = 0.1 to simplify the 
training.

4  Numerical experiments 
for acoustic‑structure problems

In this section, the MPIPN is applied to solve two-dimen-
sional acoustic-structure systems by obtaining pointwise 
scattered acoustic pressure. The system contains three com-
putational domains with different governing PDEs. The 
numerical experiments are implemented to validate the 
superiority of the MPIPN in solving constant and change-
able parametric conditions of the Helmholtz equations of the 
parametric systems.

4.1  Application of MPIPN to acoustic‑structure 
systems

4.1.1  Acoustic‑structure systems

In the present work, the two-dimensional parametric acous-
tic-structure system consists of different mediums includ-
ing liquid phase and solid phase. The liquid phase is filled 
with water, while the solid phase is composed of an acoustic 

(16)LOBS =
1

No

Ni�

j=1

‖ũ − u‖
�
,

(17)L = � ⋅ LOBS + � ⋅ LPDE,
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metasurface [38, 39] and a linear elastic plate wall. The 
overall parametric acoustic-structure system of this study is 
shown in Fig. 4. The metasurface and the linear elastic wall 
below the interface SI of the incident wave are submerged in 
the exterior acoustic field ΩE . The whole system is divided 
into three computational domains and each domain obeys 
the Helmholtz PDEs under three specific conditions. First, 
the outer boundary obeys the plane wave radiation condi-
tion which surrounds the entire water medium domain in a 
quadrangle. Second, the water medium obeys the pressure 
acoustics condition. Third, the surface of the solid phase 
obeys the acoustic-structure coupling condition. Specifically, 
in the verification system, the multi-physics phenomenon is 
realized by the coupling effect between acoustic metasurface 
and incident harmonic acoustic wave. The acoustic-structure 
coupling effect can be described by the generalized Snell’s 
law [40] as

where �r denotes the reflection wave angle, � is the wave-
length, n represents the reflection indices, and ��∕�x repre-
sents the phase shifts along the x direction. As an artificial 
layered metamaterial, the acoustic metasurface is artifi-
cially divided into multiple subunits. The metasurface is 
divided into 25 subunits and different physical parameters 
are assigned to each subunit. Each subunit is characterized 
by density and Young's modulus, resulting in a total of 50 
physical parameters for acoustic metasurface. When the inci-
dent acoustic wave is emitted to the interface of the metas-
urface, it generates elastic deformation on the solid phase. 
The monitorable deformation of the solid causes phase shifts 
along the interface of different mediums. Therefore, the 
acoustic metasurface obeys the generalized Snell’s law [40]. 

(18)�r = arcsin

(
���

2�n�x

)
,

The phase shifts lead to deviation of the reflection acoustic 
wave and influence the solutions of scattered acoustic field, 
which is the consequence of the acoustic-structure coupling.

4.2  Governing PDEs

The typical steady acoustic-structure system is composed 
of three computational domains and each part obeys corre-
sponding governing PDEs. Solving the parametric acoustic-
structure systems is predicting the solutions of the paramet-
ric Helmholtz equations across all computational domains. 
We apply harmonic background acoustic wave as the inci-
dent wave, which can be expressed as

where the initial excitation pressure p0 = 1pa , ek denotes 
the unit direction vector, X denotes the space coordinates. 
Specifically, keq = (2�f )2∕c denotes the exact value of the 
wave number under the specific velocity of the sound in 
water c and frequency f  of the background acoustic wave. 
In the verification system, we set zero dipole domain source 
and zero monopole domain source. Therefore, we derive the 
governing PDEs for each domain as follows.

First, the water medium obeys the pressure acoustic con-
dition, and the governing equation satisfies the wave equa-
tion form of the Helmholtz equation that can be expressed as

where pt is the total acoustic pressure, �c is the density of 
the water medium. Specifically, the total pressure pt is the 
sum of the scattered acoustic pressure ps and the background 
acoustic pressure pb.

Second, the outer boundary obeys the plane wave radia-
tion condition. Based on Givoli and Neta’s reformulation of 
the Higdon conditions [41] for plane wave and Helmholtz 
equation. The outer boundary obeys the plane wave radiation 
and the governing equations can be expressed as

where Δ∥ at a given point on the boundary denotes the 
Laplace operator in the tangent plane at a particular point, i 
is the imaginary unit, and � is the unit normal vector of the 
solid surface.

The boundary of the solid phase including the acous-
tic metasurface and the linear elastic plate wall obeys the 
acoustic-structure coupling condition. The steady state of the 
governing equation derived from harmonic wave and elastic 
condition of the Helmholtz equation can be expressed as

(19)pb = p0e
−ikeq

�
�⋅ek

‖ek‖
�

,

(20)∇

(
−
1

�c

(
∇pt

))
−

k2
eq
pt

�c
= 0,

(21)−�

(
−
1

�c

(
∇pt

))
+ i

(
keq

�c
+

Δ∥

2keq�c

)
ps = 0,

Fig. 4  Overall parametric acoustic-structure system
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where � indicates the steady state displacement of the acous-
tic-structure boundaries which can be monitored directly, � 
indicates angular velocity.

4.3  MPIPN for parametric acoustic‑structure 
systems

We apply the MPIPN to solve the governing PDEs of the 
parametric acoustic-structure systems and study both 
explicit and implicit parametric conditions of the Helmholtz 
equations to determine complete solutions of the systems. 
The parametric conditions for the governing PDEs include 
the background acoustic frequency and physical parameters 
of the acoustic metasurface, where three physical quanti-
ties that govern the solutions are explicit and implicit in 
the PDEs of the system, respectively. Specifically, the back-
ground acoustic wave frequency is explicit, while the physi-
cal parameters of the acoustic metasurface are implicit.

The background acoustic wave frequency directly exists 
in the PDEs. This can be expressed by substituting Eqs. (19) 
for Eqs. (20)–(22) as

(22)−� ⋅

(
−
1

�c

(
∇pt

))
= −� ⋅

(
−�2

�
)
,

(23)

∇
(

− 1
�c

(

∇(ps + p0e
−i (2�f )

2

c

(

�⋅ek
‖
ek‖

)

)
))

−
k2eq(ps + p0e

−i (2�f )
2

c

(

�⋅ek
‖
ek‖

)

)

�c
= 0,

Therefore, the background acoustic wave frequency is an 
explicit quantity for the governing PDEs. Nevertheless, the 
physical parameters of the acoustic metasurface including 
density and Young's modulus are implicit quantities. Since 
the deviation effect on solutions of the system cannot be cap-
tured directly from the governing equations of the system, 
and the physical parameters do not exist as mutable variables 
in the governing PDEs.In the validation cases, the MPIPN is 
used to solve parametric Helmholtz equations. The flowchart 
for the application of the MPIPN is shown in Fig. 5. N1 , 
N2 and N3 represent the number of points in point-cloud of 
the pressure acoustic domain, plane wave radiation bound-
ary and acoustic-structure coupling boundary, respectively. 
di and dq denote the dimensions of spatial coordinates and 
explicit quantities.

The Quantities Stacking module dimensionally stacks 
the explicit physical quantity, frequency of background 
acoustic wave Q =

{
qi
}N

i=1
∈ ℝ

dq with initial spatial point-
cloud X =

{
xi
}N

i=1
∈ ℝ

di , where dq = 1 , and di = 2 . The 
point-cloud 

(
N1,N2,N3

)
× 3 consists of two-dimensional 

spatial and frequency information on the three compu-
tational domains. The point-cloud is mapped by Local 
Point Extractor including Feature Transform ( F(⋅) ) and 
Matrix-MLP ( M(⋅) ) and outputs the local feature sequence 

(24)

−�
(

− 1
�c

(

∇(ps + p0e
−i (2�f )

2
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( �⋅ek
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)

)
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+ i
( keq

�c
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(25)
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Fig. 5  Application of the MPIPN for the parametric acoustic-structure systems
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SL 
(
N1,N2,N3

)
× 32 . The global feature sequence SG (

N1,N2,N3

)
× 128 is obtained by mapping SL with the 

Global Point Extractor. As for the implicit physical quan-
tities, physical parameters of the acoustic metasurface 
Q∗ =

{
q∗
i

}N

i=1
∈ ℝ

d∗
q , we encode the combination of density 

and Young’s modulus as a sequence through Z-Score nor-
malization. Each quantity can be mathematically encoded as

where d∗
q
 denotes dimensions of implicit quantities, �q∗

i
 indi-

cates the mean of the implicit quantity, and �q∗
i
 indicates the 

standard deviation of the implicit quantity. By using the 
Z-Score normalization as an encoder, the implicit quantities 
can be scaled to the same level as the parametric sequence 
SP 

(
N1,N2,N3

)
× 50 . The concatenating solving criteria 

sequence 
(
N1,N2,N3

)
× 210 is mapped to output the solu-

tions as

where M(⋅) indicates the Matrix-MLP 3 × (128, 64, 32, 1) 
that maps the criteria sequence 

(
N1,N2,N3

)
× 210 to solu-

tions Y  
(
N1,N2,N3

)
× 1 . All mapping networks including 

F(⋅) and M(⋅) necessitate being trained on Γ with priori 
knowledge of X =

{
xi
}N

i=1
∈ ℝ

di ,  Q =
{
qi
}N

i=1
∈ ℝ

dq , 
Q∗ =

{
q∗
i

}N

i=1
∈ ℝ

d∗
q and the Helmholtz equations under 

constraints of physics-informed loss function and observa-
tion loss function.

For the three computational domains in the acoustic-
structure system, physics-informed loss functions are 
derived for each domain. We define: Lpad as the loss function 
of pressure acoustic domain governed by Eqs. (20), Lpwr−r 
and Lpwr−i as the real and imaginary part, respectively for the 
loss function of the plane wave radiation boundary governed 
by Eqs. (21), Lasc as the loss function of acoustic-structure 
coupling boundary governed by Eqs. (22), and LOBS as the 
residual of the priori observation solutions and the predicted 
values on those discrete points. The above loss functions can 
be expressed as

(26)
(
q∗
i

)
new

=
q∗
i
− �q∗

i

�q∗
i

, with q∗
i
∈ ℝ

d∗
q ,

(27)Y = M
((
N1,N2,N3

)
× 210

)
, with Y ∈ ℝ

1
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where N4 refers to the number of observation solutions in the 
system, p̃s denotes predicted solutions and ps denotes ground 
true solutions. The observation solutions are randomly 
selected to distribute and kept constant in the system while 
training. This avoids extra knowledge induced by manual 
design of the position of observation points (sensors when 
implementing experiments), thus ensuring robustness of the 
MPIPN for general acoustic-structure systems. The reason 
why observation solutions are needed is mathematically 
deduced from the degenerate solutions of PDEs. For Eqs. 
(20) of pressure acoustic domain, one degenerate solution 
can be obtained that pt = 0 , and the scattered acoustic pres-
sure ps = −pb for all points in the domain, which is not the 
solution we want for the system. For Eqs. (21) of the plane 
wave radiation boundary, one degenerate solution of the real 
part of the equation is ps = −pb , whereas one degenerate 
solution of the imaginary part is ps = 0 . Since pb = 1pa , 
the neural networks tend to obtain a balanced value between 
0 and 1 to minimize the residual of the loss function for 
governing equations. These will affect the solutions of the 
acoustic-structure coupling boundary. Therefore, the FE–BE 
simulation provides a minority of priori observation solu-
tions to construct the residual of the priori solutions and the 
predicted values to avoid degenerate solutions.

In the numerical experiments, we utilized an optimizer 
that combines RAdam (Rectified Adam) [42] and LookA-
head [43], RAdam-LookAhead to solve the optimization 
problem of parameter updating in models. To compare the 
performance of MPIPN fairly, the framework was trained 
three times in the same environment and the average results 
are recorded. We obtained the predicted solutions p̃s of the 
Helmholtz equations on three computational domains. Rela-
tive domain errors of L2 norm (RDE) and absolute pointwise 
errors of L1 norm (APE) are utilized as evaluation metrics for 
each computational domain, which are given by

where N indicates the number of points for the computa-
tional domain, respectively. RDE provides the global accu-
racy of predicted solutions, and APE intuitively reflects the 
deviation of the predicted solutions.
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4.4  Constant parametric conditions

The MPIPN is tested to solve the Helmholtz equations on a 
series of constant parametric conditions for the systems. In 
the acoustic field ΩE of the system, the length of the acous-
tic domain L = 20m , the width of the domain W = 15m , 
the length of the linear elastic plate wall Ls = 10m and the 
width of the linear elastic plate wall Ws = 2m . The acoustic 
metasurface is in an extremely thin shape, whose thickness 
is less than the acoustic wavelength. Therefore, the thickness 
of the metasurface t = 0.08m . After spatial discretization, 
the oriented PDEs are as follows

In the following case 1 and case 2, there are N1 = 1377 
points in the pressure acoustic domain, N2 = 88 points on 

(35)�2
x
ps + �2

y
ps + �2

x
pb + �2

y
pb + k2

eq

(
ps + pb

)
= 0,

x ∈ (−10,−5] ∪ [5, 10), y ∈ (−4, 11),

x ∈ [−5, 5], y ∈ (−4,−2] ∪ [0.08, 11),
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1
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x
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y
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)

tan
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x = −10, x = 10, y = −4, y = 11,
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�2
x
ps ⋅ x + �2

y
ps ⋅ y + �2

x
pb ⋅ x + �2

y
pb ⋅ y

)
= � ⋅ �2

u,
x ∈ [−5, 5], y = −2 or 0.08,

x = −5 or 5, y ∈ [−2, 0.08].

the plane wave radiation boundary, N3 = 158 points on the 
acoustic-structure coupling boundary. Overall, a total of 
1623 oriented discrete points necessitate to be solved in 
case 1 and case 2. As for observation solutions, 50 discrete 
points are randomly selected to provide the ground truth 
as priori physical constraints. Therefore, for loss function 
Eqs. (32), the number of observation solutions is N4 = 50 . 
Among the selected priori solutions, there are 4 solutions 
for the plane wave radiation, 30 solutions for the pressure 
acoustic domain and 16 solutions for the acoustic-struc-
ture coupling boundary. The extracted point-cloud of the 

Fig. 6  Discrete point-cloud of case 1 and case 2: (a) overall oriented discrete points, (b) randomly selected observation points
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computational domain and the observation discrete points 
are illustrated in Fig. 6.

4.5  Case 1: constant background acoustic wave 
frequency

In case 1, the MPIPN is tested to validate its ability to extract 
explicit physical quantity, which is the background acoustic 
wave frequency in the system. We select three background 
acoustic wave frequencies as a constant variable, which are 
300 Hz , 350 Hz , 400 Hz , 450 Hz , 500 Hz . For each constant 
frequency, we set 1000 changeable physical parameters. The 
density of each subunit is randomly selected from the inter-
val ranging from 1∕3 to 2 times the water density, where the 
water density is 1000 kg/m3 . The Young's modulus of each 
subunit is randomly selected from the interval ranging from 
1∕3 to 5 times the water modulus, where the Young's modu-
lus of water is 2.25 × 106Pa . For the linear elastic wall, Pois-
son's ratio is set to be 0.34 and the density is 4500 kg/m3 , 
with Young's modulus selected to be 1.08 × 105MPa . The 
box plot of RDE on four frequencies with 1000 combina-
tions of parameters is shown in Fig. 7. The maximum error is 
less than 2 × 10−2 , and the average error is less than 1 × 10−2 
With the frequency increasing, the average RDE and disper-
sion of errors are in reasonable interval. This indicates that, 
with constant explicit physical quantities, the MPIPN is able 
to identify the implicit quantities.

4.6  Case 2: constant physical parameters

In case 2, the MPIPN is tested to validate its ability to 
encode and fuse the implicit physical quantities to solve the 
related parametric PDEs. In the acoustic-structure system, 
physical parameters including density and Young’s modulus 

are implicit quantities. We select three combinations of 
physical parameters as constant variables, which are densi-
ties of 1, 1.5, 2 times the water density and Young's modulus 
of 1, 3, 5 times the water modulus. The parameters of elastic 
plate wall are the same as it in case 1. For each combination, 
the background wave frequency uniformly sampled 1000 
frequencies from 300 Hz to 500 Hz . We present one combi-
nation of physical parameters of the metasurface computed 
under frequencies of 300 Hz , 400 Hz , 500 Hz in Fig. 8. The 
mean APE of 300 Hz , 400 Hz , 500 Hz are 0.017, 0.008 and 
0.013, respectively. It can be noted that although various 
frequencies cause great change in the distribution of solu-
tions, the absolute errors are at a reasonably low level. The 
quantitative average RDE of one randomly selected com-
bination of physical parameters on the testing frequencies 
is illustrated in Table 1. The proposed method successfully 
identifies the background wave frequency and maintains 
considerable accuracy. The MPIPN is able to capture the 
changes in frequency as explicitly existing in the governing 
PDEs with constant implicit quantities.

4.7  Case 3: changeable parametric conditions

In case 3, the MPIPN is tested to solve the Helmholtz equa-
tions with changeable combinations of background fre-
quency and physical parameters of the acoustic metasurface. 
Both the explicit and implicit conditions are changeable and 
form 1000 combinations of parametric conditions as training 
datasets Γ and 200 unseen combinations as testing datasets 
Λ . Specifically, the overall 1200 combinations are composed 
of 12 groups of physical parameters and 100 frequencies. 
All quantities are randomly selected from the interval men-
tioned in the constant condition cases. In case 3, we adjust 
the position of the solid phase and create new oriented PDEs 
as follows

There are N1 = 4928 points in the pressure acoustic 
domain, N2 = 140 points on the plane wave radiation 
boundary, N3 = 554 points on the acoustic-structure 
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Fig. 7  Box plot of Relative domain errors on testing background 
wave frequencies
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coupling boundary. Overall, a total of 5622 oriented 
discrete points necessitate to be solved in case 3. As for 
observation solutions, 150 discrete points are randomly 
selected to provide the ground truth as priori physical 

constraints. For loss function Eqs. (32), the number of 
observation solutions is N4 = 150 . Among the priori solu-
tions, there are 10 solutions for the plane wave radiation, 
100 solutions for the pressure acoustic domain and 40 
solutions for the acoustic-structure coupling boundary. We 
propose the extracted point-cloud of the computational 
domain and the observation discrete points in Fig. 9.

4.8  General results

Within the testing dataset Λ , we randomly selected an exam-
ple of predicted solutions and ground truth. The results are 
compared and the APE is presented in Fig. 10. It can be 
observed that predicted solutions are consistent with the 

Fig. 8  Predicted solutions compared with ground truth in absolute pointwise error level

Table 1  RDE of one combination of physical parameters on three fre-
quencies

Frequency ( Hz) Average ‖‖p̃s − ps
‖‖2∕‖‖ps‖‖2 on Λ

Pressure acoustics Plane wave radia-
tion

Acoustic-
structure 
coupling

300 6.4285E−3 1.3242E−2 7.8252E−3
400 4.1452E−3 9.1213E−3 6.3256E−3
500 4.9424E−3 1.1623E−2 7.4367E−3
Average 5.1720E−3 1.1329E−2 7.1958E−3
Variance 1.3429E−6 4.3099E−6 6.0571E−7
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ground truth distribution, proving that the proposed frame-
work captures the mapping functions to features of vari-
ous scales and features of different computational domains. 
Solutions near the acoustic-structure boundary are the most 
significant parts of the system, since the coupling condi-
tions are complex and the exact value of the solutions are 
in a strong correlation with the values of the acoustic pres-
sure field. Besides, the predicted solutions near the coupling 
boundary are highly accurate. The error analysis of the solu-
tions compared with ground true values is shown in Table 2. 
The framework obtained predicted solutions with an average 
RDE of 1.52% on the pressure acoustic domain, 2.03% on the 
plane wave radiation boundary and 1.64% on the acoustic-
structure coupling boundary. The maximum RDE for unseen 
parametric conditions in Λ is less than 5% . Figure 11 shows 
the average absolute errors of LPDE on Λ . The error distribu-
tion is at a reasonable level of 10−3 . The intuitive distribution 
of relative errors on each domain and the probability density 
function (PDF) of RDE for all domains are shown in Fig. 12. 
The distributions of errors on three computational domains 
are close to the normal distributions. Fewer outliers in the 
error distribution exist in the histogram, which is an accept-
able margin of error for solving the oriented equations.

4.9  Errors clustering phenomenon with training 
stages

A noteworthy phenomenon in Fig. 10 is that, those points 
whose APE are relatively high are clustering in the domain. 
The reason is that the Helmholtz equations under the pres-
sure acoustic condition constrain the gradient information of 
the solutions for the point-cloud. For a cluster of points, the 

gradients inside satisfy the governing equations but values 
of points are not exactly right. To illustrate this, we take the 
pressure acoustic domain as an example since it contains 
the majority of arbitrary discrete points in acoustic-structure 
systems. Figure 13 shows the predicted solutions obtained 
by MPIPN after training on datasets Γ at the beginning, mid-
dle and end stages of the training process, which are 200, 
800, and 1800 epochs respectively. At the beginning of the 
training, the predicted solutions are inaccurate. The number 
of clusters of points with high errors and the distribution 
area are large. When trained to the middle stage, clusters 
with high errors begin to shrink, and the general trend of 
the solutions is right. After being trained to convergence, 
the predicted solutions fit in well with the ground truth and 
few clusters of high errors exist, meaning that the govern-
ing equations of the domain are fully satisfied. Noticing that 
the clusters of high errors first fade away at areas with high 
point-cloud density (near the metasurface), and then is the 
area with low point-cloud density. This can be explained by 
the convergence and divergence of the meshes during com-
putation: The high density of meshes makes the derivative 
computation between points more accurate. In this sense, 
although the high density of point-cloud makes the amount 
of calculation increase and harder for the training of the neu-
ral network, it is more suitable for the fitness of the govern-
ing equations. This indicates that the well-trained MPIPN is 
capable of capturing the gradient information of point-cloud 
in clusters.

Fig. 9  Discrete point-cloud of case 3: (a) overall oriented discrete points, (b) randomly selected observation points
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4.10  Explicit background acoustic wave frequency 
conditions

As the explicit parametric condition for the acoustic-struc-
ture system, frequency of the background acoustic wave 
determines the background wave pressure and directly influ-
ences the solutions of scattered acoustic pressure on three 
domains, which can be inferred from Eqs. (23), (24) and 
(25). Different domains computed in the same frequency 
form a complete scattered acoustic field under certain 

frequency conditions. Here, we show the predicted solu-
tions on 300 Hz , 350 Hz , 400 Hz , and 500 Hz across the 
sampling interval with the same physical parameters of the 
metasurface in Fig. 14. It can be noted from the compari-
son that the frequency generates significant variance of the 
acoustic pressure field. As the frequency increases from 300 
Hz to 500 Hz , the gradient of the pressure distribution of 
the scattered field changes more sharply. The average RDE 
for multi-frequency conditions is shown in Table 3. The 
average RDE is less than 2.0% on all domains. The values 

Fig. 10  Randomly selected predicted results: (a) pressure acoustic domain, (b) plane wave radiation boundary, (c) acoustic-structure coupling 
boundary

Table 2  Comparison results of 
different computational domains 
on Λ

Computational domains Average 
‖‖p̃s − ps

‖‖2∕‖‖ps‖‖2
Maximum 
‖‖p̃s − ps

‖‖2∕‖‖ps‖‖2
Minimum 
‖‖p̃s − ps

‖‖2∕‖‖ps‖‖2

Pressure acoustics 1.5171E−2 4.9791E−2 9.1626E−3
Plane wave radiation 2.0311E−2 3.7654E−2 1.1523E−2
Acoustic-structure coupling 1.6438E−2 8.7362E−2 7.4959E−3
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of errors tend to be smaller around 440 Hz than those on 
other frequencies. This is because the priori knowledge is 
densely distributed at about 400 Hz and the distribution of 
frequency sampling points is smoother around 400 Hz, mak-
ing neural networks have a greater weight for updating the 
predicted solutions at this frequency interval to reduce the 
loss function rapidly and the correlation between frequency 
and spatial coordinates are prominently expressed. It can be 
observed that there are no outliers for four frequencies with 
a maximum variance of RDE less than 4 × 10−5 . This indi-
cates the proposed framework is stable across frequencies. 
Therefore, the frequency parametric condition for the acous-
tic-structure system can be distinguished by MPIPN. The 
framework can capture the correlation between the explicit 
physical quantities and the initial spatial information, and 
accurately solve the Helmholtz equations concerning vary-
ing explicit physical quantities.

Fig. 11  Average absolute errors of L
PDE

 on testing datasets Λ

Fig. 12  Relative domain errors: (a) Pressure acoustic domain, (b) Plane wave radiation boundary (c) Acoustic-structure boundary, (d) PDF of 
relative domain errors
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4.11  Implicit physics parameters conditions

The 12 sets of physical parameters of the metasurface are 
randomly selected on the proposed interval. A variety of 
physical parameters causes phase shifts to generate devi-
ated angles on the reflection acoustic wave physically. 
Mathematically, the variance of the physical properties 
changes the acoustic-structure coupling condition by 
affecting the displacement field. Therefore, variances of 

physical properties of the metasurface have the greatest 
influence on the solutions on acoustic-structure coupling 
boundary and indirectly affect other domains. We present 
predicted solutions of 6 groups of physical parameters 
out of 12 groups in the Γ under the frequency of 450 Hz 
and corresponding ground truths in Fig. 15. In compari-
son with multi-frequency condition, it can be observed 
that the proposed framework ensures that the distribution 
trend of solutions with the same frequency is consistent 

Fig. 13  Comparison between predicted solutions and ground truth of pressure acoustic domain: (a) 200 epochs, (b) 800 epochs, (c) 1800 epochs. 
(d–f) correspond to the APE of (a–c) respectively

Fig. 14  Predicted solutions and corresponding ground truth on multi-frequency: (a) 300 Hz , (b) 350 Hz , (c) 400 Hz , (d) 500 Hz
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when the physical parameter vector changes and capture 
the variations near the coupling boundary and points near 
the boundary. Detailed values of the RDE are shown in 
Table 4. The average RDE on all physical parameters 
is less than 1.8% and the maximum variance of RDE is 
less than 1 × 10−5 , proving that the proposed framework 
is stable across the 12 sets of physical parameters. This 

implicit parametric condition of the Helmholtz equations 
can be identified by the framework. In fact, by fusing 
a combination of density and Young’s modulus directly 
with features of point-cloud, physical parameters that lack 
a direct mathematical correlation with PDEs and do not 
have a functional relationship with explicit physical quan-
tities within the system can be directly utilized as criteria 
for the solutions. The MPIPN successfully constructs a 
mapping relationship between implicit physical quanti-
ties and corresponding solutions of the acoustic-structure 
systems.

4.12  Ablation experiment

We train the MPIPN with only observation solutions as 
data-driven regime to validate the effectiveness of physics-
informed regime as the ablation experiment. At the same 
time, the comparison of data-driven and physics-informed 
methods is completed. It is used to prove that the proposed 
model fully utilizes the mathematical constitutive informa-
tion of PDE to obtain the solutions. Here we present the 
results on the pressure acoustic domain in Fig. 16. The 
randomly selected observation solutions in the domain 
mainly crowd on the upper of the metasurface, making 
this area have relatively high accuracy. However, for areas 
that have a low density of observation solutions, the APE 

Table 3  Average relative domain errors for changeable frequencies

Frequency ( Hz) Average ‖‖p̃s − ps
‖‖2∕‖‖ps‖‖2 on Λ

Pressure acoustics Plane wave radia-
tion

Acoustic-
structure 
coupling

300 1.4422E−2 1.9922E−2 1.4299E−2
320 1.6028E−2 2.3603E−2 1.4846E−2
350 1.4910E−2 2.1561E−2 2.1490E−2
380 1.3544E−2 2.3812E−2 1.1810E−2
400 1.3205E−2 1.8333E−2 1.4434E−2
420 1.2765E−2 1.8414E−2 1.6156E−2
450 1.2097E−2 1.1545E−2 9.7292E−3
480 1.5844E−2 1.6679E−2 2.3760E−2
500 1.8186E−2 1.7468E−2 2.8021E−2
Average 1.4556E−2 1.9037E−2 1.7172E−2
Variance 3.2505E−6 1.2871E−5 3.1789E−5

Fig. 15  Predicted solutions and corresponding ground truth on multi-physical parameters: (1) to (6) denote different combinations of physical 
parameters
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is unacceptably high. Quantitative comparison results are 
tabulated in Table 5. In comparison with training by LOBS , 
the MPIPN that is trained with LPDE and LOBS successfully 
captures the regulations of PDEs and the values of residual 
remain at a low level. Therefore, this verifies the validity of 
the physical information in solving the equation and also 
proves that the MPIPN is capable of identifying and trans-
forming characteristics of computational conditions and 
parametric conditions as criteria for solving the Helmholtz 
equations. The MPIPN ensures that the constitutive math-
ematical information of PDE can be used to solve pointwise 
solutions of the entire computational domain with high accu-
racy while providing a priori solutions for less than 3 % of 
the total number of points.

5  Conclusions

In this paper, we proposed Multi Physics-informed Point-
Net (MPIPN) to solve the parametric acoustic-structure 
systems which are classic and vital multi-physics systems. 
Both explicit and implicit parametric conditions that govern 
the acoustic-structure systems can be solved. The MPIPN 
extracts the spatial geometric information and embeds 
parametric physical quantities by using a developed point-
cloud architecture. The framework fuses the explicit physi-
cal quantities with the spatial point-cloud by dimensionally 
Quantities Stacking module. The correlation between physi-
cal quantities can be captured and encoded to sequences by 
Local Point Extractor and Global Point Extractor. Mean-
while, for implicit physical quantities that are not directly 
expressible to the governing PDEs, the MPIPN embeds these 

quantities by manually encoding method automatically or 
statistically. The proposed framework is trained by adaptive 
physics-informed loss functions to realize weakly supervised 
learning by using a minority of acoustic pressure of systems 
as labeled solutions. Therefore, the MPIPN can identify the 
computational conditions including different domains and 
parametric conditions of the acoustic-structure systems. The 
well-trained MPIPN is capable of solving new unseen para-
metric conditions in acoustic-structure systems. We applied 
the MPIPN to parametric steady acoustic-structure systems 
to validate the effectiveness of the framework and obtained 
the following results:

(1) The MPIPN is capable of identifying separate con-
stant explicit and implicit parametric conditions for the 
Helmholtz equations that govern the acoustic-structure 
systems. Our method predicts solutions of the paramet-
ric acoustic-structure systems with constant frequency 
and physical parameters condition at average relative 
errors less than 1.0%.

(2) The MPIPN can deal with changeable unseen com-
binations of parametric conditions for the Helmholtz 
equations. The proposed method achieves average rela-
tive domain errors of less than 2.82% and 2.21% under 
unseen combinations of changeable frequencies and 
physical parameters, respectively.

(3) The MPIPN is efficient and robust for solving para-
metric acoustic-structure systems with multiple com-
putational domains. By using the proposed method, 
average relative domain errors of predicted solutions 
in the acoustic-structure system are less than 2.1% and 

Table 4  Average relative 
domain errors for changeable 
physical parameters

Combination of physical 
parameters

Average ‖‖p̃s − ps
‖‖2∕‖‖ps‖‖2 on Λ

Pressure acoustics Plane wave radiation Acoustic-
structure 
coupling

1 1.3632E−2 1.6578E−2 1.4999E−2
2 1.3755E−2 1.6931E−2 1.0496E−2
3 1.3371E−2 1.6282E−2 1.1630E−2
4 1.3750E−2 1.6452E−2 1.4161E−2
5 1.6537E−2 2.0853E−2 1.5661E−2
6 1.2849E−2 1.4523E−2 1.0548E−2
7 1.5097E−2 1.4546E−2 1.2729E−2
8 1.3815E−2 1.6735E−2 1.3718E−2
9 1.5466E−2 2.2076E−2 1.7139E−2
10 1.4222E−2 2.0873E−2 1.4908E−2
11 1.3839E−2 1.8527E−2 1.6835E−2
12 1.5547E−2 1.5640E−2 1.9253E−2
Average 1.4323E−2 1.7501E−2 1.4340E−2
Variance 1.0848E−6 5.8338E−6 6.6846E−6
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maximum error is less than 5.0% across all three com-
putational domains.

(4) The MPIPN effectively leverages physics-informed 
impact to predict pointwise solutions of the acous-
tic-structure system. The ablation experiment exten-

sively illustrates that the incorporation of the physics-
informed term in the loss function results in average 
improvement over 78% in accuracy, thereby demon-
strating its necessary efficacy.

Fig. 16  Comparison between: (a) training with physics-informed regime, (b) training with observation solutions as data-driven regime

Table 5  Comparison results of 
physics-informed and data-
driven regimes

Computational domains Pressure acoustics Plane wave radiation Acoustic-
structure 
coupling

Average ‖‖p̃s − ps
‖‖2∕‖‖ps‖‖2 Physics-informed 1.5171E−2 2.0311E−2 1.6438E−2

Data-driven 9.4462E−2 8.2960E−1 6.1231E−2
Maximum ‖‖p̃s − ps

‖‖2∕‖‖ps‖‖2 Physics-informed 3.9791E−2 3.7654E−2 7.7362E−2
Data-driven 1.9638E−1 8.1457E−1 1.5955E−1

Minimum ‖‖p̃s − ps
‖‖2∕‖‖ps‖‖2 Physics-informed 9.1626E−3 1.1523E−2 7.4959E−3

Data-driven 3.1438E−2 4.0934E−2 1.7630E−2
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We plan to broaden the MPIPN in mainly three ways: 
(1) one is that more types of physics fields and physical 
knowledge should be involved orientally in the framework 
more than acoustic-structure systems, (2) another is that a 
more general method is required to deal with the degener-
ate solutions for complex PDEs to avoid necessity of any 
priori solution, (3) the last one is to generalize the feature 
extraction to the unit cell scale of the model to capture 
minor perturbations.
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